Behavioural Economics and Housing Decisions

Lecture 2: Behavioural Science Toolbox

By Helen Bao

Session outline

- Behavioural sciences defined
- Behavioural theories and models
- Behavioural research methods
- > Applications of behavioural insights in housing studies
- > The way forward

Behavioural Sciences Defined

- A range of inter-related academic disciplines (behavioural economics, psychology, social anthropology, neuroscience, biology, ...)
- Seek to understand how individuals take decisions in practice and how they are likely to respond to options
- > Enable us to design policies or interventions that can encourage, support and enable people to make better choices for themselves and society.

Behavioural Sciences Defined

- Behavioural interventions are most useful when neither the visible hand nor the invisible hand is working
- Visible hand: government regulations and laws
- Invisible hand: economic incentives (financial incentives mainly)
- Behavioural interventions:
 - the empathetic hand, targeting the psychological and/or social aspects of decision making
 - > Inevitably context-specific and idiosyncratic

Nature of the Standard Model

Decision x	State of the World s_i	Probability $p(s_i)$	Payoff $U(x s_i)$
Coffee	Interesting	0.8	10
	Boring	0.2	2
Beer	Interesting	0.8	6
	Boring	0.2	4

•Expected Utility

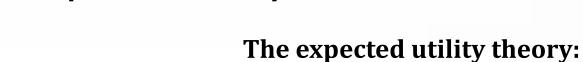
• Coffee:
$$\sum_{i=1}^{2} U(x|s_i) \times p(s_i) = 8.4$$

• Beer:
$$\sum_{i=1}^{2} U(x|s_i) \times p(s_i) = 5.6$$

The expected utility theory:

$$Max \sum_{i=1}^{k} U(x|s_i) \times p(s_i)$$

Limitations of the Standard Model


- ➤ Why are people delighted to hear they are going to get a 10% raise in salary, and then furious to find out that a colleague is going to get 15%? (Reference Dependence)
- ➤ Why do sellers often value their goods or assets much higher than buyers? (Endowment Effect)
- ➤ Why is someone unwilling to spend £500 for a product, but then delighted when their spouse buys them the same product for the same price using their joint bank account? (Mental Accounting)
- ➤ Why is the return on stocks so much higher on average than the return on bonds? (Equity Premium Puzzle)
- **>** ...

Behavioural Theories & Models – Prospect Theory

- Developed for simple prospects with monetary outcomes and stated probabilities
- Two phases: an early phase of editing and a subsequent phase of evaluation
- The editing phase consists of a preliminary analysis of the offered prospects, which often yields a simpler representation of these prospects.
- The evaluation phase: the edited prospects are evaluated and the prospect of highest value is chosen.
- Kahneman, D. and A. Tversky (1979). "Prospect Theory: An Analysis of Decision under Risk." Econometrica 47(2): 263-291.
- Tversky, A. and D. Kahneman (1992). "Advances in Prospect-theory Cumulative Representation of Uncertainty." Journal of Risk and Uncertainty 5(4): 297-323.

Prospect Theory

V(x)

Prospect Theory:

 $Max \sum_{i=1}^{k} V(x|s_i) \times w(p(s_i))$

 $Max \sum_{i=1}^{k} U(x|s_i) \times p(s_i)$

Reference Point

Gain Domain

Loss Domain $V(X) = \begin{cases} (X - r)^{\alpha} & X \ge r \\ -\lambda (r - X)^{\beta} & X < r \end{cases}$ $w(p) = \frac{p^{\gamma}}{\frac{1}{\gamma} (p^{\gamma} + (1 - p^{\gamma}))}$

Prospect Theory - Reference Points

Formation

 $V(X) = \begin{cases} (X - r)^{\alpha} & X \ge r \\ -\lambda (r - X)^{\beta} & X < r \end{cases}$

- Expectation: expected status
- Status quo: current status
- Internal reference: aspiration, goals, experience, ...
- External reference: social comparison

Adaptation

- Happiness treadmill
- We update our reference points constantly

Prospect Theory – Loss Aversion

Nature – We hate to loss more than we love to win

Neuroeconomic foundation

- gains: ventral and dorsal striatum
- losses: insula, amygdala

Empirical evidence

- effect size: > 2
- asymmetric price elasticities
- asymmetric WTA and WTP (endowment effect)
- disposition effect

$$V(X) = \begin{cases} (X - r)^{\alpha} & X \ge r \\ -\lambda (r - X)^{\beta} & X < r \end{cases}$$

Prospect Theory – Decision Weighting

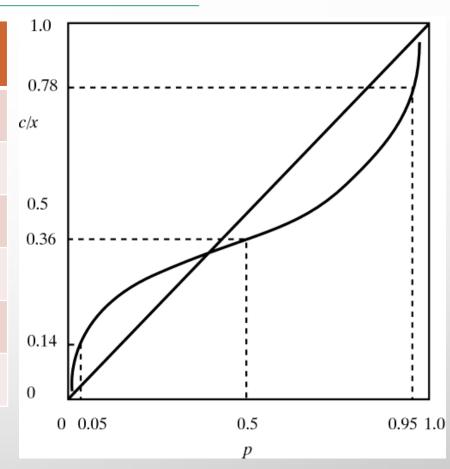
Nature

 reasons for difference between objective and subjective probabilities: estimation problems, weighting

$$w(p) = \frac{p^{\gamma}}{\frac{1}{\gamma} (p^{\gamma} + (1 - p^{\gamma}))}$$

Neuroeconomic foundation

 correlation between behavioural non-linearities in gambling tasks and non-linear striatal response


Empirical evidence

 Four – fold attitude to risk, according to gain/loss and low/high probability.

Prospect Theory – Decision Weighting

Prospect	Description	EV (\$)	Median CE (\$)	Risk Attitude
(0,.05; \$100,.95)	Gain, high p	95	78	averse
(0,.05;-\$100,.95)	Loss, high p	-95	-84	seeking
(0,.50; \$100,.50)	Gain, med p	50	36	averse
(0,.50; -\$100,.50)	Loss, med p	-50	-42	seeking
(0,.95; \$100,.05)	Gain, low p	5	14	seeking
(0,.95; -\$100,.05)	Loss, low p	-5	-8	averse

$$w(p) = \frac{p^{\gamma}}{\frac{1}{\gamma} (p^{\gamma} + (1 - p^{\gamma}))}$$

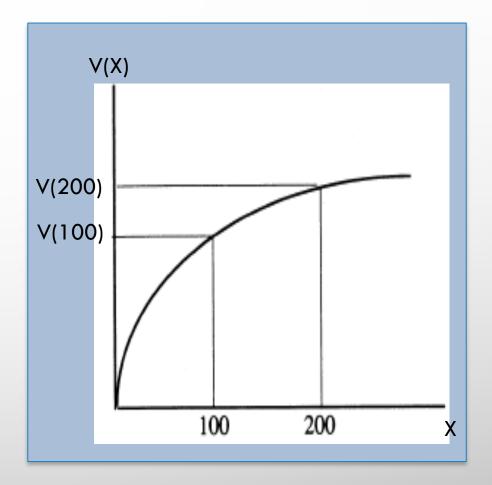
Empirically derived PT probability weighting (gain domain only) 12

Behavioural Theories & Models – Mental Accounting

Mental accounting: set of cognitive operations used to code, categorize and evaluate financial activities.

- Framing and editing perception of outcomes
- Budgeting and fungibility assignment of activities to specific accounts
- Choice bracketing and dynamics determination of the time periods to which different mental accounts relate
- Thaler, R. (1985). "Mental Accounting and Consumer Choice." <u>Marketing Science</u> **4**(3): 199-214.
- Thaler, R. H. (2008). "Mental accounting and consumer choice." <u>Marketing Science</u> 27(1): 15-25.
- Thaler, R. H. (1999). "Mental accounting matters." <u>Journal of Behavioral Decision Making</u> 12(3): 183-206.

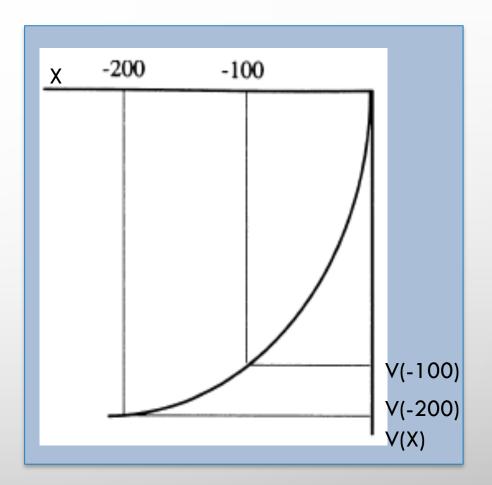
Implications of Prospect Theory


Many transactions are complex, involving several components, simultaneous or sequential; hence:

- **Segregate gains** (because the gain function is concave due to diminishing marginal sensitivity).
- **Integrate losses** (because the loss function is convex, due to diminishing marginal sensitivity).
- Integrate smaller losses with larger gains (to offset loss aversion).
- Segregate small gains from larger losses (value of a small gain may exceed that of slightly reducing a large loss, dimin. marginal sensitivity).

Segregate gains

Gain function is concave due to diminishing marginal sensitivity


- **Example:**
 - V(200) < 2 V(100)
 - win two lotteries that pay \$50 and \$25 respectively, vs. win a single lottery paying \$75

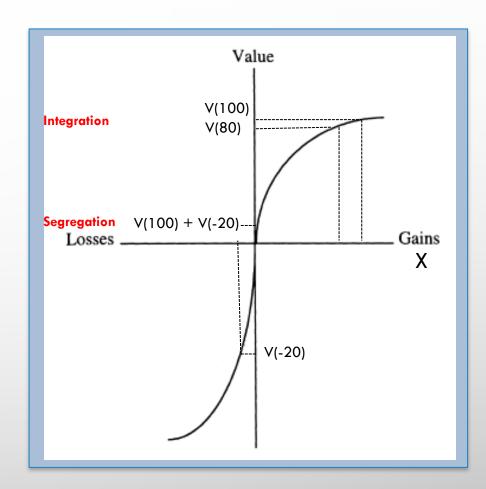
Integrate losses

- ➤ Loss function is convex, due to diminishing marginal sensitivity

 V(2X) > 2 V(X)
- **Example:**
 - V(-200) > 2 V(-100)
 - A parking ticket of \$200 vs. two parking tickets of \$100 each

Integrate smaller losses with larger gains

> to offset loss aversion


$$V(X) > V(X - Y) - V(-Y)$$

 $V(X - Y) > V(X) + V(-Y)$

Example:

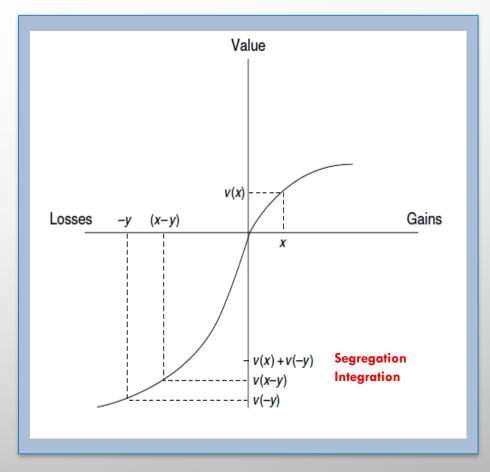
$$V(80) > V(100) + V(-20)$$

Example:

Win a \$100,000 lottery and pay 20% income tax afterwards vs. Win a \$80,000 lottery but tax free

Segregate small gains from larger losses

➤ Value of a small gain may exceed that of slightly reducing a large loss, dimin. marginal sensitivity


$$V(X) > V(X - Y) - V(-Y)$$

 $V(X) + V(-Y) > V(X - Y)$

Example:

$$V(20) + V(-100) > V(-80)$$

Example:

A \$1000 necklace with a \$100 coupon

Mental Accounting — Budgeting

Income budgeting

- Expenses on children's clothing are more sensitive to child benefits adjustments)
- Tax rebate are not spent the same way as free cash

Wealth budgeting

- Standard model: income smoothing (life-cycle, Permanent Income Hypothesis - PIH) – young and old should dissave
- Empirical evidence:
 - short time horizons
 - spending over-sensitive to current income
 - lack of fungibility, assets classified according to liquidity, corresponding marginal propensity to consume (MPC) from 1 to nearly zero.

Mental Accounting – Fungibility

- Lack of Fungibility in many real-life decision-making processes
- Credit cards vs cash
 - higher willingness to pay (WTP) when using credit cards
 - concurrent credit card debt and savings
- Emotional accounting with life insurance payment
 - hedonic avoidance(don't buy fun)
 - Laundering (spend on good purposes, moral cleansing)

Mental Accounting – Choice Dynamics

 Choice bracketing: individuals segregate or aggregate choices over time periods

Opening and closing accounts

- Reluctant to close an account and realize losses: Disposition effect
- Credit cards payment: salience and aggregation
- Myopic loss aversion: equity premium puzzle
- End-of-the-day effect (gambling): close mental account by the end of the day and loss averse. In lose domain so quite risk seeking. Bet on the long-shot
- Diversification bias (1/n Heuristic): simultaneous choices are much more diversified than sequential choices. Significant implication to public policy making such as retirement saving plans as people can be manipulated easily.

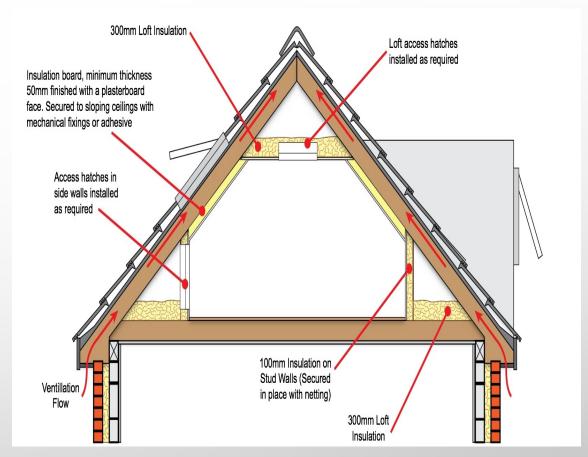
Behavioural Theories & Models – Nudges

- Nudge has two components: libertarian paternalism and choice architecture
- Paternalism: to help people make the choice they would select if they were fully informed and unaffected by arousal or temptation.
- Libertarian: no one is ever forced to do anything, free-will.
- Choice architecture: the environment in which people make decisions
- Nudges: features of the choice architecture that influence the decisions people make without changing either objective payoffs or incentives (neither the visible nor the invisible hands).
- Thaler, R. H. and C. R. Sunstein (2008). Nudge: improving decisions about health, wealth, and happiness. New Haven, Yale University Press.
- Thaler, R. H. (2018). "From Cashews to Nudges: The Evolution of Behavioral Economics." American Economic Review 108(6): 1265-1287.

Nudges – Applications and Impacts

- Behavioural Insights Team
- (UK, 2010)

- Behavioural Insights unit
- (NSW, Australia, 2014)
- Social and Behavioral Sciences Team
 - (USA, 2015)

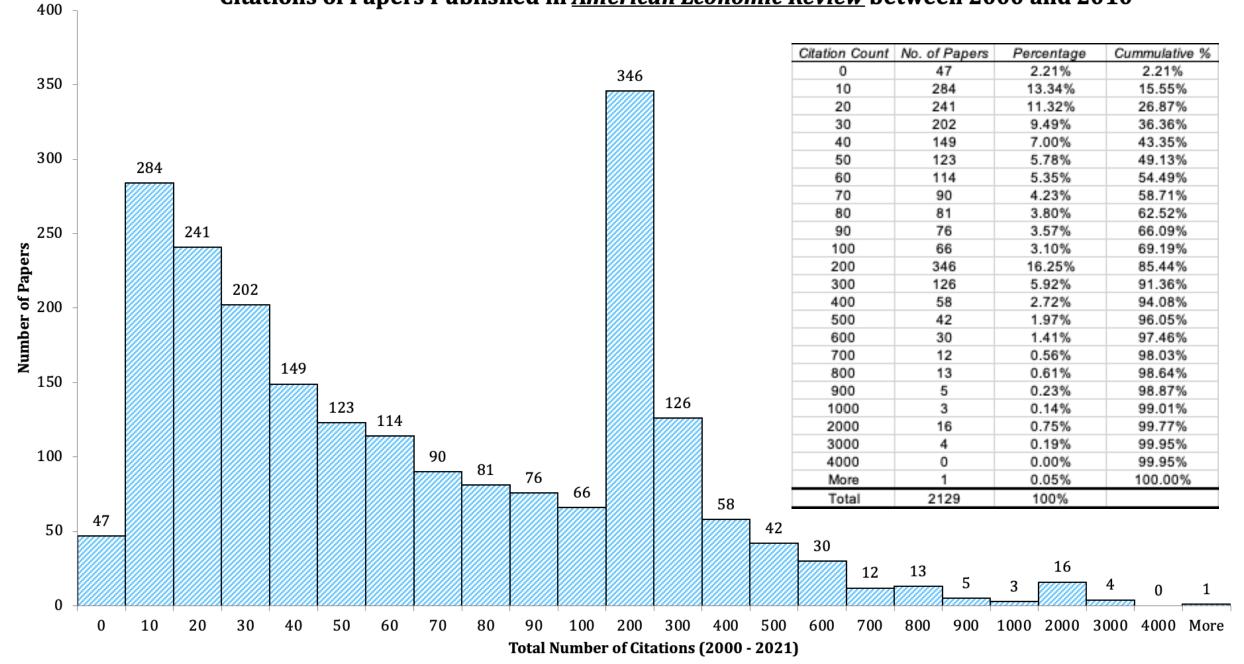


Behavioural Insight Units around the world (over 200 to date):

- Countries: UK, US, Australia, Canada, Netherlands, and Germany, India, Indonesia, Peru, Singapore, ...
- International institutions: World Bank, UN agencies, OECD, and EU

Nudges – Applications and Impacts

- An UK Example:
- Increasing Loft Insulation
 Installation
 - 1. Installation Only: £179
 - 2. Installation + Clearance 1 (Discounted Price): £369
 - 3. Installation + Clearance 2 (Market Price) : £450

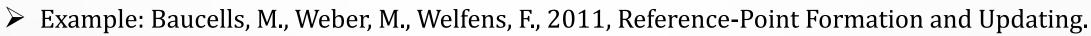

Picture source: http://wellingtoncountylistings.com

Behavioural Models Summary

Paper	1 July 2014	25 July 2015	6 June 2016	8 July 201 <i>7</i>	19 July 2018	29 Sept 2019	28 July 2021	11 July 2022	4 July 2023
Original PT	9645	10889	12512	13875	17242	19196	23132	25534	27518
Kahneman & Tversky (1979)	(29524)	(36276)	(40407)	(45503)	(50766)	(55470)	(68613)	(73058)	(78572)
Cumulative PT	2436	2815	3182	3511	4412	4898	6099	6833	7461
Tversky & Kahneman (1992)	(6804)	(8044)	(9026)	(10528)	(11905)	(13472)	(16660)	(18221)	(19724)
Third Generation PT	43	52	64	73	85	93	119	138	155
Schmidt et al (2008)	(90)	(113)	(140)	(170)	(200)	(233)	(281)	(309)	(337)
Mental Accounting									
Thaler (1985)	(3758)	(4333)	(4887)	(5661)	(6105)	(6454)	(7767)	(8386)	(8935)
Over-reaction	919	1006	1092	1220	1562	1786	2130	2315	2471
De Bondt and Thaler (1985)	(5285)	(6175)	(6839)	(7616)	(8228)	(9001)	(10684)	(11519)	(12197)
Heteroskedasticity Test	7888	7910	8364	9021	10481	10481	12337	13006	13562
White (1980)	()	(21265)	(22817)	(24666)	(26187)	(27698)	(30955)	(32274)	(33619)

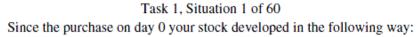
Note: Web of Sciences Citation Statistics (Google Scholar in brackets)

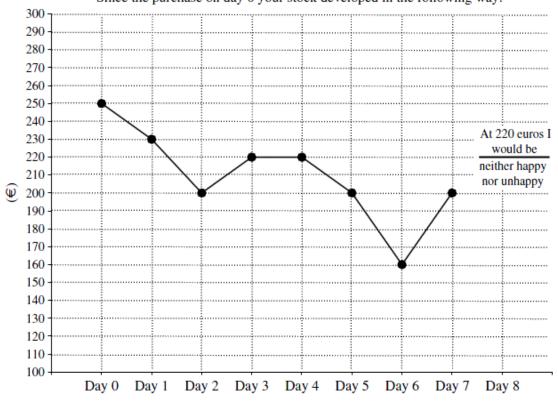
Citations of Papers Published in *American Economic Review* between 2000 and 2010



Citations of Papers Published in *Management Science* between 2000 and 2010 300 Citation Count No. of Papers Percentage Cummulative % 0 16 1.10% 1.10% 10 108 7.43% 8.53% 20 148 10.19% 18.72% 250 240 30 149 10.25% 28.97% 40 130 8.95% 37.92% 50 108 7.43% 45.35% 60 89 6.13% 51.48% 70 101 6.95% 58.43% 80 81 5.57% 64.01% 200 90 47 3.23% 67.24% 40 2.75% 100 69.99% Number of Papers 200 240 16.52% 86.51% 300 80 5.51% 92.02% 46 400 3.17% 95.18% 149 148 500 24 1.65% 96.83% 600 16 1.10% 97.94% 130 700 0.28% 98.21% 800 2 0.14% 98.35% 108 108 900 9 0.62% 98.97% 101 1000 0 0.00% 98.97% 100 89 1100 4 0.28% 99.24% 81 80 1200 0.28% 99.52% 1300 0.00% 99.52% 0 1400 0.14% 99.66% 1500 0.21% 99.86% 3 47 46 50 More 2 0.14% 100.00% 40 1453 Total 100% 24 16 16 1000 1100 1200 1400 1500 More 0 10 20 30 40 50 60 70 80 90 100 300 400 500 600 700 800 900 1300 Total Number of Citations (2000 - 2021)

- > Experiments
 - Testing under ceteris paribus condition
 - Reduces confounds
 - Potential design problems
 - Interpretation of results: ecological validity, cherry-picking
 - Issues: Undergraduate students, hypothetical settings, consumption goods...




Management Sciences, 57, 506-519.

- 55 (20 female) undergraduate students
- 8 Euros for participation
- Computer lab

1		-								•	_	
1	Table 1	The 60 Price Se	equences Us	ed in the Exp	eriment							
2	Sequence k	У1	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	<i>y</i> ₅	<i>y</i> ₆	y ₇	<i>y</i> ₈	<i>y</i> 9	<i>y</i> ₁₀	Avg. R _k
3 200 150 200 200 197 5 250 200 200 200 200 200 6 200 250 200 188 150 200 250 200 180 210 200 200 188 150 200 250 210 190 210 200 200 188 110 150 200 250 230 210 190 210 200 200 188 110 150 200 250 230 200 188 130 200 250 230 200 188 131 200 250 250 250 250 250 250 250 250 250 250 250 250 250 <td>1</td> <td>250</td> <td>200</td> <td>150</td> <td>200</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>235.0</td>	1	250	200	150	200							235.0
4 150 200 200 200 200 230 230 230 230 230 230 260 260 200 260 200 260 200 260 200 260 200 230 260 200 240 200 160 200 233 233 28 150 200 250 200 240 200 160 200 233 200 188 9 250 200 150 210 190 210 200 200 233 10 150 200 250 210 190 210 200 200 188 181 120 200 250 210 190 210 200 200 188 181 11 200 150 200 250 230 200 150 193 193 210 200 183 200 200 150 193 211 200 250 230 200 150 170 200 250 230 230 200 150 170 191	2	150	200	250	200							182.2
5 250 200 200 200 230 200 200 200 200 200 200 200 200 200 200 240 200 200 233 8 150 200 250 200 240 200 160 200 233 188 150 200 250 200 150 210 190 210 200 200 188 180 200 250 210 190 210 200 200 188 180 200 250 210 190 210 200 200 188 110 150 200 250 210 190 210 200 200 188 181 110 200 250 200 150 188 183 200 250 200 150 190 200 200 190 200 211 190 201 200 211 190 201 201 201 201 201 201 201 201 201 201 201 201 201 201 </td <td>3</td> <td>200</td> <td>150</td> <td>200</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>198.1</td>	3	200	150	200								198.1
6	4	150	200	200								177.9
7	5	250	200	200								235.2
8 150 200 250 200 240 200 160 200 186 9 250 200 150 210 190 210 200 233 10 150 200 250 210 190 210 200 200 188 11 200 150 200 250 200 150 200 210 190 210 200 200 188 211 200 250 200 150 211 212 200 250 200 150 193 193 193 193 200 250 200 150 193 193 194 200 250 230 201 193 211 200 250 230 200 150 217 201 193 220 250 220 250 220 250 220 250 220 250 220 250 220 190 190 200 250 221 210 200 190 190 200 200 201 <td>6</td> <td>200</td> <td>250</td> <td>200</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>208.3</td>	6	200	250	200								208.3
9	7	250	200	150	200	160	200	240	200			230.4
10 150 200 250 210 190 210 200 188 11 200 150 200 250 200 150 216 12 200 250 200 150 193 13 200 200 250 250 211 14 200 200 250 250 230 15 200 150 170 200 250 230 16 200 250 230 200 190 220 250 17 170 220 270 220 190 220 250 211 18 170 220 270 220 190 220 250 211 19 200 250 250 200 200 190 190 190 190 21 200 250 250 200 200 200 201 201 200 201 201 201 201 201 201 201 201 201	8	150	200	250	200	240	200	160	200			186.1
11 200 150 200 250 250 201 150 193 12 200 250 200 150 193 193 193 193 193 193 193 193 194 200 250 230 211 194 200 250 230 201 193 211 194 200 250 230 201 196 211 193 211 194 211 194 211 194 211 194 211 194 211 194 220 250 221 195 250 250 221 196 220 250 221 196 220 250 221 197 193 193 194 220 250 220 250 220 199 190 220 250 221 220 250 220 250 220 199 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190	9	250	200	150	210	190	210	200				232.4
12 200 250 200 150 150 193 13 200 200 150 193 193 14 200 200 250 230 211 15 200 150 170 200 250 230 211 16 200 250 230 200 150 170 190 211 17 170 220 270 220 190 220 250 211 18 170 220 270 220 250 220 190 190 193 19 200 250 250 200 250 220 190	10	150	200	250	210	190	210	200				185.7
13 200 200 150 193 14 200 200 250 230 230 15 200 150 170 200 250 230 211 16 200 250 230 200 150 170 191 17 170 220 270 220 190 220 250 211 18 170 220 270 220 290 250 290 190 190 193 19 200 250 250 200 250 220 190 190 193 190 190 193 190 190 190 199 199 190 199 199 190 199 199 190 199 199 190 199 199 190 190 199 190	11	200	150	200	250							216.1
13 200 200 150 193 14 200 200 250 230 231 15 200 150 170 200 250 230 211 16 200 250 230 200 150 170 191 17 170 220 270 220 190 220 250 211 18 170 220 270 220 250 220 190 190 193 19 200 250 250 200 250 220 190 190 193 20 200 150 150 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 190 190 190 190 190 190 190 190 200 190 190 190 190 190 200 190 200 190 190 200 190												193.1
14 200 200 250 250 230 230 211 15 200 150 170 200 250 230 201 151 211 16 200 250 230 200 150 170 190 191<		200	200	150								193.6
15 200 150 170 200 250 230 201 150 170 191 16 200 250 230 200 150 170 191 191 17 170 220 270 220 190 220 250 211 18 170 220 270 220 250 220 190 190 193 19 200 250 250 200 200 250 200 201 200 201 200 201 200 201 200 201 200 201 201 200 201 <td></td> <td>219.1</td>												219.1
16 200 250 230 200 150 170 170 190 170 170 170 170 220 270 220 190 220 250 211 180 170 220 270 220 250 220 190 190 193 193 193 190 190 190 190 193 193 193 190 19		200			200	250	230					211.5
17 170 220 270 220 190 220 250 18 170 220 270 220 250 220 190 19 200 250 250 200 201 201 20 200 150 150 200 200 201 21 200 250 200 250 200 201 22 200 150 200 250 200 200 193 23 150 150 200 250 200 200 188 24 150 200 250 200 200 200 188 25 200 250 200 150 150 190 190 26 200 250 200 150 190 190 200 250 200 190 27 200 190 190 190 190 190 200 200 200 190 29 190 200 250 200		200	250	230	200	150	170					197.6
18 170 220 270 220 250 220 190 190 193 19 200 250 250 200 200 211 200 250 200 201		170	220	270	220	190	220	250				211.1
19 200 250 250 200 201 20 200 150 150 200 200 21 200 250 200 250 200 213 22 200 150 200 250 200 193 23 150 150 200 250 200 183 24 150 200 200 200 200 200 183 25 200 250 200 150 150 193 193 26 200 250 200 150 150 193 193 190 190 190 190 190 200 250 200 190 200 200 190 200 200 200 190 200 200 190 200 200 200 190 200 200 190 190 200 200 190 190 200 200 190 190 200 200 190 190 190 190 190 190	18	170										193.3
20 200 150 150 200 200 21 200 250 200 213 22 200 150 200 250 200 193 213 22 200 150 200 150 200 193 193 193 193 193 193 194 194 194 194 194 194 194 194 195 196 197 196 197 </td <td></td> <td>200</td> <td></td> <td>250</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>211.8</td>		200		250								211.8
21 200 250 200 250 200 213 22 200 150 200 150 200 193 23 150 150 200 250 200 188 24 150 200 200 200 200 188 25 200 250 200 150 150 193 26 200 200 200 200 150 190 190 190 200 250 200 190 200 200 200 190 200 200 200 190 200 200 200 190 200 200 190 200 200 190 200 200 200 190 200 200 190 190 200 200 190 190 200 200 190 190 200 200 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 <td></td> <td>200.7</td>												200.7
22 200 150 200 150 200 193 23 150 150 200 250 200 188 24 150 200 200 200 200 188 25 200 250 200 150 150 193 26 200 200 200 200 150 199 190 190 190 200 250 200 190 200 200 200 200 200 200 200 200 200 200 200 200 200 190 200 250 200 190 200 200 200 190 200 200 190 200 200 200 190 200 200 190 190 200 200 190 200 200 200 200 <td></td> <td></td> <td></td> <td></td> <td></td> <td>200</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>213.7</td>						200						213.7
23												193.6
24 150 200 200 200 200 188 25 200 250 200 150 150 193 26 200 200 200 200 150 199 190 190 190 200 250 200 190 200 27 200 190 190 190 190 200 250 200 190 200 200 200 190 200 200 190 200 200 190 200 200 190 200 200 190 200 190 200 200 200 200 200 200 200 200 200 200 200 200 200 200 </td <td></td> <td>185.4</td>												185.4
25												181.4
26 200 200 200 150 190 27 200 190 190 190 190 200 250 200 190 201 28 200 200 200 200 200 200 200 200 200 190 190 190 190 190 190 190 190 190 190 190 190 200 190 190 190 190 190 200 190 190 190 190 200 200 190 190 190 200 200 200 190 200 190 200 190 200 190 200												193.0
27 200 190 190 190 190 200 250 200 190 200 28 200 200 200 200 200 200 200 200 190 200 190 200 200 190 190 190 190 190 190 190 190 190 200 190 190 190 190 200 190 190 190 200 200 190 200 190 200												191.5
28							190	200	250	200	190	201.6
29 190 200 250 200 190 190 190 190 190 200 199 30 190 200 200 200 200 200 200 200 200 200 198 31 200 150 200 160 200 240 200 200 200 200 32 200 150 200 190 200 210 200 200 200 200 33 250 200 200 200 200 200 200 200 200 200												200.5
30 190 200 200 200 200 200 200 200 200 200 200 200 198 31 200 150 200 160 200 240 200 200 202 202 32 200 150 200 190 200 210 200 200 200 33 250 200 200 200 200 200 200 200		190	200	250	200	190	190	190	190	190		199.2
31 200 150 200 160 200 240 200 200 200 200 200 200 32 250 200 200 200 200 200 200 200 200 20												195.0
32 200 150 200 190 200 210 200 200 33 250 200 200 200 200 200 200 200												202.3
												200.2
	33	250	200	200	200	200					20	228.1
		250	250	200	150	200					74	237.6
												217.0

At which selling price would you be neither happy nor unhappy to sell the stock the next day, i.e., on day 5?

Please indicate this price by clicking on the accompanying graph. If you click incorrectly, you can click again.

Continue

graph is drawn completely, subjects must click on the graph area to indicate the price at which they would be neither happy nor unhappy to its is sequence 42 in Table 1.

Table 2 Each Entry Indicates a Pair of Sequences j - k, as Labeled in Table 1

Factor or pattern	Pairs of sequences						
Purchase price	1-2	3-4	5-6	7-8	9-10		
Current price	11-12	3-13	14-6	15-16	17-18		
Avg. (intermediate) prices	5-43	4-44	45-46	47-48	49-50		
Highest price	23-24	25-26	27-28	29-30	31-32		
Lowest price	33-34	35-36	37-38	39-40	41-42		
Dashed hope vs. false alarm	6-3	19-20	21-22				
Early vs. late	51-52	53-54	55-56	57-58	59-60		

Note. The pairs are designed to study the effect of the factor or pattern in the corresponding row.

Table 3 Each Entry Indicates a Pair of Sequences j - k, the Unit Effect That a Change in the Row Factor Has on $R_j - R_k$, and the p-Values of a Matched-Pairs Sign Test

Factor	Pairs of sequences, unit effect and p -value							
Purchase price	1-2 0.528 (0.00b)	3-4 0.403 (0.000)	5-6 0.537 (0.000)	7-8 0.443 (0.000)	9-10 0.466 (0.000)	0.48		
Current price	11-12 0.230 (0.000)	3-13 0.090 (0.035)	14-6 0.215 (0.000)	15-16 0.231 (0.000)	17-18 0.295 (0.000)	0.21		
Avg. (intermediate) prices	5-43 0.059 (0.229)	4-44 0.142 (0.006)	45-46 0.039 (0.009)	47-48 0.107 (0.000)	49-50 0.118 (0.291)	0.09		
Highest price	23-24 0.081 (0.049)	25-26 0.029 (0.090)	27-28 0.022 (0.864)	29-30 0.084 (0.522)	31-32 0.071 (0.585)	0.06		
Lowest price	33-34 -0.190 (0.126)	35-36 -0.047 (0.627)	37-38 -0.008 (0.871)	39-40 -0.008 (0.090)	41-42 -0.186 (0.001)	-0.09		

Note. The last column reports the average unit effect.

> Field Studies

- Ecological validity vs. conceptual validity
- Impact of confounds
- Examples:
 - Barseghyan, L., F. Molinari, et al., 2013. The Nature of Risk Preferences: Evidence from Insurance Choices. *American Economic Review*, 103(6): 2499-2529.
 - Della Vigna, S., Malmendier, U., 2006. Paying not to go to the gym. American Economic Review, 96, 694-719.
 - List, J.A., 2011. Does Market Experience Eliminate Market Anomalies? The Case of Exogenous Market Experience. *American Economic Review*, 101, 313-317.
 - Pope, D.G., Schweitzer, M.E., 2011. Is Tiger Woods Loss Averse? Persistent Bias in the Face of Experience, Competition, and High Stakes. *American Economic Review*, 101, 129-157.

- **Example:** Pope, D.G., Schweitzer, M.E., 2011. Is Tiger Woods Loss Averse? Persistent Bias in the Face of Experience, Competition, and High Stakes. *American Economic Review*, 101, 129-157.
 - Par: a salient reference point
 - Putts: the final shots players take to complete a hole in PGA tours
 - Sample size: 2.5 million putts from 239 tournaments completed between 2004 and
 2009
 - Quality of data:
 - Laser measurements of initial and final ball placement (x, y, z coordinates)
 - Restricted to putts attempted for eagle, birdie, par, bogey, or double bogey only
 - Restricted to players who had at least 1,000 putts
 - Included more than 300,000 fixed effects

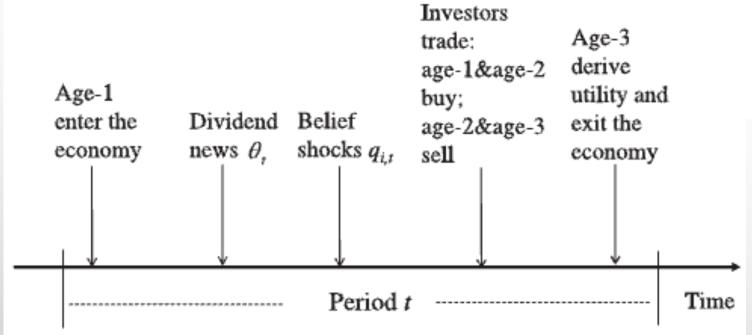
TABLE 3—THE EFFECT OF DIFFERENT SHOT VALUES ON PUTT SUCCESS—ROBUSTNESS CHECKS

			Dependent	variable equality (OLS est	uals 1 if put	t was made		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Putt for eagle	-0.040*** (0.002)	-0.039*** (0.002)	-0.030*** (0.002)	-0.042*** (0.002)	-0.039*** (0.002)	-0.036*** (0.002)	-0.036*** (0.003)	-0.064*** (0.003)
Putt for birdie	$-0.036*** \\ (0.001)$	$-0.036*** \\ (0.001)$	$-0.026*** \\ (0.001)$	$-0.029*** \\ (0.001)$	$-0.028*** \\ (0.001)$	$-0.028*** \\ (0.001)$	$-0.028*** \\ (0.001)$	$-0.030*** \\ (0.001)$
Putt for bogey	0.004*** (0.001)	0.005*** (0.001)	0.001 (0.001)	0.003*** (0.001)	0.002*** (0.001)	0.002*** (0.001)	0.002*** (0.001)	0.006*** (0.001)
Putt for double bogey	-0.007*** (0.002)	-0.006*** (0.001)	-0.005** (0.002)	-0.003 (0.002)	-0.003 (0.002)	-0.003 (0.002)	-0.002 (0.002)	0.001 (0.002)
Putt distance: seventh-order polynomial	X	X	X	X	X	X	X	X
Player fixed effects Previous-putts-on- green effects		X	X X	X X	X X	X X	X X	X X
Tournament-round- hole effects				X				
4 hole-location effects					X			
8 hole-location effects						X		
16 hole-location effects							X	
Score-on-hole-if- make-putt effects								X
R ² Observations	0.598 2,525,161	0.598 2,525,161	0.599 2,525,161	0.603 2,525,161	0.612 2,525,161	0.626 2,525,161	0.646 2,525,161	0.670 2,525,161

Source: Pope, D.G., Schweitzer, M.E., 2011. Is Tiger Woods Loss Averse? Persistent Bias in the Face of Experience, Competition, and High Stakes. American Economic Review, 101, 129-157.

TABLE 7—UNDERSTANDING THE COSTS OF MISSING BIRDIE PUTTS

2007 Rank	Golfer	Tournaments played	Scoring average (72 holes)	Tournament earnings (2007)	Additional earnings if scored 1 stroke better	% earnings increase if scored 1 stroke better
1	Tiger Woods	16	69.1	\$10,867,052	\$945,532	8.70
2	Vijay Singh	27	70.39	\$4,728,376	\$584,550	12.36
3	Jim Furyk	23	70.21	\$4,154,046	\$1,530,232	36.84
4	Phil Mickelson	22	70.39	\$5,819,988	\$659,750	11.34
5	K. J. Choi	25	70.4	\$4,587,859	\$362,450	7.90
6	Rory Sabbatini	23	70.49	\$4,550,040	\$902,567	19.84
7	Zach Johnson	23	70.95	\$3,922,338	\$347,000	8.85
8	Charles Howell III	26	71.47	\$2,832,091	\$374,500	13.22
9	Brandt Snedeker	29	70.5	\$2,836,643	\$393,650	13.88
10	Adam Scott	19	70.96	\$3,413,185	\$221,400	6.49
11	Scott Verplank	23	70.56	\$3,114,289	\$490,750	15.76
12	Steve Stricker	23	70.19	\$4,663,077	\$1,077,000	23.10
13	Sergio Garcia	19	70.45	\$3,721,185	\$784,807	21.09
14	Woody Austin	27	70.84	\$2,887,596	\$399,066	13.82
15	Hunter Mahan	27	70.78	\$2,858,995	\$339,533	11.88
16	John Rollins	29	70.97	\$2,488,891	\$1,005,300	40.39
17	Boo Weekley	29	70.95	\$2,613,211	\$883,633	33.81
18	Aaron Baddeley	23	70.96	\$3,441,119	\$277,040	8.05
19	Ernie Els	16	70.5	\$2,705,715	\$734,633	27.15
20	Mark Calcavecchia	28	71.11	\$2,993,332	\$504,533	16.86
Average		23.85	70.6	\$3,959,951	\$640,896	17.6


Source: Pope, D.G., Schweitzer, M.E., 2011. Is Tiger Woods Loss Averse? Persistent Bias in the Face of Experience, Competition, and High Stakes. American Economic Review, 101, 129-157.

> Simulations

- Ecological validity and Conceptual validity
- Computationally intensive
- Simulation design is crucial
- Examples:
 - Li, Y., Yang, L.Y., 2013. Prospect theory, the disposition effect, and asset prices. *Journal of Financial Economics*, 107, 715-739.

Fig. 1. This figure plots the order of events in period t.

$$U_t^i = E_t^i[\nu(X_{3,i})], (4)$$

where

$$X_{3,i} = W_{3,i} - R_f^2 W_{1,i}, (5)$$

$$v(x) = \begin{cases} x^{\alpha} & \text{if } x \ge 0, \\ -\lambda(-x)^{\alpha} & \text{if } x < 0, \end{cases}$$
 (6)

with $0 < \alpha \le 1$ and $\lambda \ge 1$.

Table 1

Baseline technology parameter values.

We take one period to be six months. In each period, a good dividend shock and a poor dividend shock are equally likely; that is, $\pi = 0.5$. Parameters θ_H and θ_L are calibrated to generate an *annualized* dividend growth rate with a mean of 2.24% and a volatility of 25.97%.

Parameters	Values
Risk-free rate	
R_f	1.0191
Dividend parameters	
π	0.5
$ heta_H$	1.1913
θ_L	0.8310

Variables	$\alpha = 0.3$	$\alpha = 0.5$	$\alpha = 0.88$	$\alpha = 1$
Disposition effect				
PGR	0.55	0.56	0.51	0.50
PLR	0.28	0.35	0.45	0.50
DispEffect	1.93	1.61	1.13	1.00
Momentum effect				
$E(R_{t+1} \theta_t = \theta_H)$	1.0628	1.0508	1.0322	1.0191
$E(R_{t+1} \theta_t = \theta_L)$	1.0066	1.0180	1.0246	1.0191
MomEffect	5.62%	3.28%	0.76%	0.00%
WML	5.48%	3.21%	0.76%	0.00%
Turnover				
$Corr(R_t, Q_t)$	0.65	0.81	0.92	0.00
Mean & volatility of excess returns				
$E(R_t - R_f)$	1.57%	1.54%	0.93%	0.00%
$\sigma(R_t - R_f)$	16.45%	16.77%	17.66%	18.16%
Stock holdings				
$E[H_1(S_t)]$	0.45	0.47	0.49	0.50
$E[H_{20}(S_t)]$	0.29	0.28	0.27	0.25

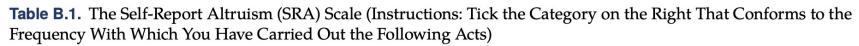
Variables	$\lambda = 1$	$\lambda = 2.25$	$\lambda = 3$	$\lambda = 4$
Reversed disposition effect				
PGR	0.50	0.41	0.36	0.31
PLR	0.50	0.42	0.41	0.39
DispEffect	1.00	0.95	0.89	0.81
Reversal effect				
$E(R_{t+1} \theta_t = \theta_H)$	1.0191	1.0555	1.0723	1.0932
$E(R_{t+1} \theta_t = \theta_L)$	1.0191	1.0580	1.0779	1.1034
MomEffect	0.00%	-0.25%	-0.56%	-1.03%
WML	0.00%	-0.23%	-0.54%	-0.91%
Turnover				
$Corr(R_t, Q_t)$	0.00	-0.95	-0.96	-0.96
Mean & volatility of excess returns				
$E(R_t - R_f)$	0.00%	3.77%	5.61%	7.91%
$\sigma(R_t - R_f)$	18.16%	18.93%	19.39%	20.08%

Table 4
Quantitative analysis.

The table reports model-implied trading, asset prices, and volume for various empirical values of parameter α , while parameter λ is set at 2.25, the value estimated by Tversky and Kahneman (1992). One period is taken to be six months. The technology parameter values are fixed at the values in Table 1. PGR and PLR are the simulated "proportion of gains realized" and "proportion of losses realized." We define, DispEffect = PGR/PLR, and if DispEffect > 1, then a disposition effect exists. R_t and Q_t are stock returns and turnover (or aggregate selling) in period t. $MomEffect = (R_{t+1} | \theta_t = \theta_H) - E(R_{t+1} | \theta_t = \theta_L)$. WML is the simulated average momentum portfolio return in the multi-stock setting. If MomEffect > 0 and WML > 0, then a momentum effect exists. $E(\cdot)$, $Corr(\cdot, \cdot)$, and $\sigma(\cdot)$ denote the mean, correlation, and standard deviation, respectively. The empirical values of PGR/PLR and momentum are taken from Dhar and Zhu (2006) and Jegadeesh and Titman (1993). The empirical values of $Corr(R_t, Q_t)$, $(R_t - R_f)$, and $\sigma(R_t - R_f)$ are computed based on NYSE/Amex data from 1926–2009.

	Wu and Gonzalez (1996)	Liu (in press)	Wu and Gonzalez (1996)	Tanaka, Camerer, and Nguyen (2010)	Tversky and Kahneman (1992)	Empirical
Variables	$\alpha = 0.37$	$\alpha = 0.48$	$\sigma = 0.52$	$\alpha = 0.61$	$\sigma = 0.88$	value
Disposition effect						
PGR	0.40	0.41	0.41	0.41	0.40	0.38
PLR	0.19	0.23	0.24	0.28	0.37	0.17
DispEffect	2.15	1.79	1.68	1.49	1.07	2.24
Momentum effect						
$E(R_{t+1} \theta_t = \theta_H)$	1.0948	1.0878	1.0861	1.0805	1.0673	_
$E(R_{t+1} \theta_t = \theta_L)$	1.0451	1.0519	1.0545	1.0573	1.0638	_
MomEffect	4.97%	3.59%	3.16%	2.32%	0.34%	_
WML	4.86%	3.52%	3.10%	2.28%	0.34%	5.27%
Turnover						
$Corr(R_t,Q_t)$	0.85	0.88	0.89	0.91	0.95	0.16
Mean & volatility of excess returns						
$E(R_t - R_f)$	5.09%	5.08%	5.02%	4.99%	4.63%	3.84%
$\sigma(R_t - R_f)$	17.21%	17.70%	17.84%	18.12%	18.84%	32.16%

Source: Li, Y., Yang, L.Y., 2013. Prospect theory, the disposition effect, and asset prices. Journal of Financial Economics, 107, 715-732.



- > Mixed methods and the focus on external validity
 - Combinations of multiple methods: lab experiment, survey, field experiment,
 simulations, games, ...
 - Galizzi, M. M. and D. Navarro-Martinez (2019). "On the External Validity of Social Preference Games: A Systematic Lab-Field Study." *Management Science* 65(3): 976-1002.

- Galizzi, M. M. and D. Navarro-Martinez (2019). "On the External Validity of Social Preference Games: A Systematic Lab-Field Study." *Management Science* 65(3): 976-1002.
 - O Self-reported social behaviours performed in the past, decisions in seven experimental social preference games, and behaviours in five naturalistic field situations that we created.
 - O Survey: Self-Report Altruism (SRA) scale, 20 items (questions)
 - Lab experiments: dictator game (2), ultimatum game (2), trust game (2), and public good game (1)
 - Field experiments: help moving boxes, lend mobile phones, and donate to children's charity, environmental charity, and lab donation.
 - O The extent to which the games can explain the self-report measures and the field behaviours
 - O The overarching conclusion is that the games do a poor job explaining both the self-report measures and the field behaviours

	Never	Once	More than once	Often	Very often
1. I have helped push a stranger's car out of the snow.					
2. I have given directions to a stranger.					
3. I have made change for a stranger.					
4. I have given money to a charity.					
5. I have given money to a stranger who needed it (or asked me for it).					
6. I have donated goods or clothes to a charity.					
7. I have done volunteer work for a charity.					
8. I have donated blood.					
9. I have helped carry a stranger's belongings (books, parcels, etc.).					
10. I have delayed an elevator and held the door open for a stranger.					
11. I have allowed someone to go ahead of me in a lineup (at Xerox					
machine, in the supermarket).					
12. I have given a stranger a lift in my car.					
13. I have pointed out a clerk's error (in a bank, at the supermarket) in					
undercharging me for an item.					
14. I have let a neighbour whom I didn't know too well borrow an item					
of some value to me (e.g., a dish, tools, etc.).					
15. I have bought "charity" Christmas cards deliberately because I					
knew it was a good cause.					
16. I have helped a classmate who I did not know that well with a					
homework assignment when my knowledge was greater than his					
or hers.					
17. I have, before being asked, voluntarily looked after a neighbour's					
pets or children without being paid for it.					
18. I have offered to help a handicapped or elderly stranger across a street.					
19. I have offered my seat on a bus or train to a stranger who was					
standing.					
20. I have helped an acquaintance to move households.					

Altruism Games

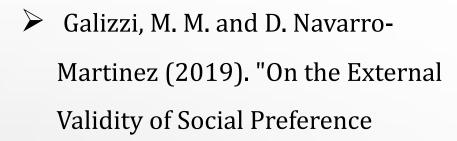
- Dictator Game (DG1): Two-player game in which player 1 decides how to divide £10 between the self and player 2. Player 2 simply receives the allocation established by player 1. Half of the participants were player 1 and the other half player 2.
- 2. Dictator Game (DG2): Like Dictator Game 1, but switching the roles (and matching people with different partners).
- 3. Ultimatum Game (UG1): Two-player game in which player 1 decides how to divide £10 between him/her and player 2. player 2 decides whether to accept the allocation or not. If the allocation is rejected, both players get nothing. Half of the participants were player 1 and the other half player 2.
- 4. Ultimatum Game (UG2): Like Ultimatum Game 1, but all of the participants were player 2 and had to respond to the same allocation of £3 for player 2, which was determined by a participant who was player 1 in a preliminary pilot session.
- 5. Trust Game (TG1): Two-player game in which player 1 has an endowment of £10 and decides how much of it to send over to player 2. The amount sent over is multiplied by three and given to player 2, who has to decide how much of it to send back to player 1. Half of the participants were player 1 and the other half player 2.
- 6. Trust Game (TG2): Like Trust Game 1, but all of the participants were player 2 and all of them had to respond to the same amount of £4 sent over by player 1, which was determined by a participant who was player 1 in a preliminary pilot session.
- 7. Public Good Game (PGG): Four-player game in which all of the players have an endowment of £10 and have to decide simultaneously how much of it to contribute to a common group fund. The overall money in the group fund is then multiplied by two and split between the four players.

Field Experiments

- **Boxes:** A research assistant stood in an area out- side of the lab and told the participants that he needed help carrying two voluminous (but light) boxes to the basement of the university building where the lab was located. He explicitly asked the participants one by one after they exited the lab if they could help. If the participants said yes, they actually helped him carry the boxes downstairs.
- 2. Phone: A research assistant stood outside of the lab and said to the participants that he needed to make a quick phone call but that his phone was out of battery. He explicitly asked the participants if they could lend him their phone for a minute to make the call. If the participants lent him the phone, he simply made a call, hung up, and said that there was no answer.
- 3. Children's Charity: A research assistant stood outside of the lab collecting money for a leading charity dedicated to helping children in developing countries. He explicitly asked the participants if they wanted to contribute money to the charity. The research assistant was wearing an official university T-shirt and a professional (sealed) charity bucket of the type commonly used to collect donations, with a large sticker with the logo of the charity. He also had color-printed leaflets with a brief description of the charity and its activities. The money given by people was then actually sent to the charity.
- 4. **Environmental Charity:** This situation was exactly like the previous one, but with a different charity. This organization was a leading charity dedicated to protecting the environment. The money donated was actually sent to the charity.
- 5. Lab Donation: This situation was analogous to situations 3 and 4, but this time the research assistant was asking for money to support research projects conducted in our lab. The money given by people was actually added to the research funds of the lab.

Galizzi, M. M. and D. Navarro-Martinez (2019). "On the External Validity of Social

Preference Games: A Systematic Lab-Field Study." *Management Science* 65(3): 976-1002.


Table 1. Pairwise Correlations Between Game Decisions (Spearman's ρ)

	DG1&2 P.1	UG1 P.1	UG1 P.2	UG2 P.2	TG1 P.1	TG1 P.2	TG2 P.2	PGG
DG1&2 P.1	1.00***	0.48***	-0.09	-0.18***	0.26***	0.32***	0.50***	0.36***
UG1 P.1	0.48***	1.00***	_	-0.20**	0.26***		0.35***	0.25***
UG1 P.2	-0.09	_	1.00***	0.09	_	0.00	0.05	0.00
UG2 P.2	-0.18***	-0.20**	0.09	1.00***	-0.02	-0.11	-0.15**	-0.09
TG1 P.1	0.26***	0.26***	_	-0.02	1.00***		0.43***	0.25***
TG1 P.2	0.32***	_	0.00	-0.11	_	1.00***	0.38***	0.30***
TG2 P.2	0.50***	0.35***	0.05	-0.15**	0.43***	0.38***	1.00***	0.34***
PGG	0.36***	0.25***	0.00	-0.09	0.25***	0.30***	0.34***	1.00***

Notes. —: correlation cannot be computed because there is no overlap between participants in the pair of variables. DG1&2 P.1 stands for player 1 in Dictator Games 1 and 2; UG1 P.1 for player 1 in Ultimatum Game 1; UG1 P.2 and UG2 P.2 for player 2 in Ultimatum Games 1 and 2, respectively; TG1 P.1 for player 1 in Trust Game 1; TG1 P.2 and TG2 P.2 for player 2 in Trust Games 1 and 2, respectively; and PGG for the Public Good Game.

^{*, **,} and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Games: A Systematic Lab-Field

Study." Management Science

65(3): 976-1002.

Table 2. Correlations Between Game Decisions and SRA Scores (Spearman's ρ)

	SRAtotal	SRAmoney
DG1&2 P.1	0.20***	0.04
UG1 P.1	0.16*	0.06
UG1 P.2	-0.05	0.07
UG2 P.2	-0.05	0.02
TG1 P.1	0.03	0.03
TG1 P.2	0.06	-0.01
TG2 P.2	0.20***	0.15**
PGG	0.14**	0.00

Notes. SRAtotal stands for the total Self-Report Altruism (SRA) score, and SRAmoney for a score including only the SRA items related to money. DG1&2 P.1 stands for player 1 in Dictator Games 1 and 2; UG1 P.1 for player 1 in Ultimatum Game 1; UG1 P.2 and UG2 P.2 for player 2 in Ultimatum Games 1 and 2, respectively; TG1 P.1 for player 1 in Trust Game 1; TG1 P.2 and TG2 P.2 for player 2 in Trust Games 1 and 2, respectively; and PGG for the Public Good Game.

*, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Galizzi, M. M. and D. Navarro-Martinez (2019). "On the External Validity of Social

Preference Games: A Systematic Lab-Field Study." *Management Science* 65(3): 976-1002.

Table 3. Correlations Between Game Decisions and Field Behaviors (Spearman's ρ)

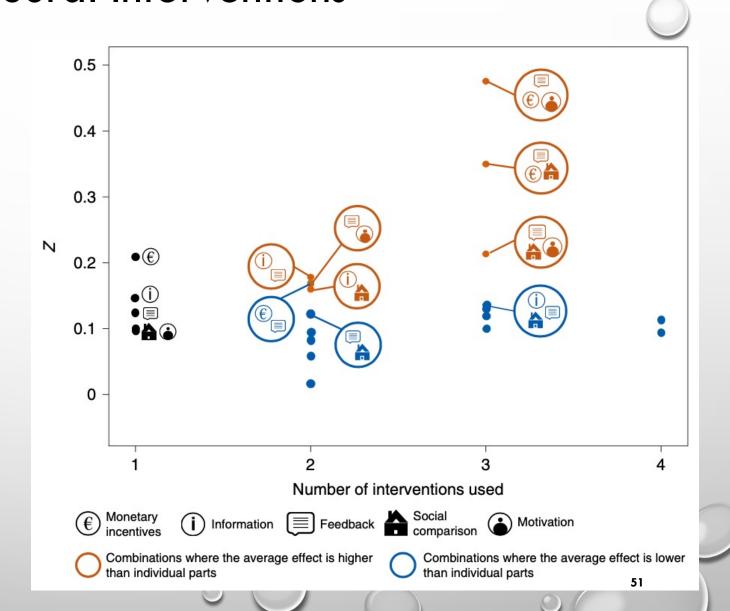
	Boxes	Phone	Children's charity	Environ. charity	Lab donation	All helping	All donations	All conditions
DG1&2 P.1	0.04	0.06	-0.25*	0.20*	-0.05	0.05	-0.06	-0.06
UG1 P.1	0.18	0.27	0.18	0.04	0.15	0.21	0.15	0.12
UG1 P.2	-0.09	0.14	0.22	-0.05	-0.06	0.08	0.04	0.07
UG2 P.2	-0.13	0.11	0.02	-0.13	0.06	0.05	-0.04	-0.01
TG1 P.1	0.15	0.28	0.54***	0.00	-0.12	0.22	0.15	0.13
TG1 P.2	0.35	-0.08	0.05	-0.12	-0.24	0.1	-0.11	-0.07
TG2 P.2	0.18	0.27*	-0.18	0.13	0.29*	0.21*	0.03	0.03
PGG	0.14	-0.04	-0.03	0.02	-0.08	0.04	-0.02	0
Average 1	0.10	0.13	0.07	0.01	-0.01	0.12	0.02	0.03
Average 2	0.19	0.15	0.05	0.05	-0.01	0.14	0.02	0.03

Notes. DG1&2 P.1 stands for player 1 in Dictator Games 1 and 2; UG1 P.1 for player 1 in Ultimatum Game 1; UG1 P.2 and UG2 P.2 for player 2 in Ultimatum Games 1 and 2, respectively; TG1 P.1 for player 1 in Trust Game 1; TG1 P.2 and TG2 P.2 for player 2 in Trust Games 1 and 2, respectively; and PGG for the Public Good Game. "All helping," "All donations," and "All conditions" group together, respectively, the two conditions related to helping, the three conditions related to giving money, and all conditions. Average 1 is the overall average of the column; Average 2 is the average excluding the variables related to player 2 in the ultimatum games.

^{*, **,} and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Behavioural Interventions

Classification of tools

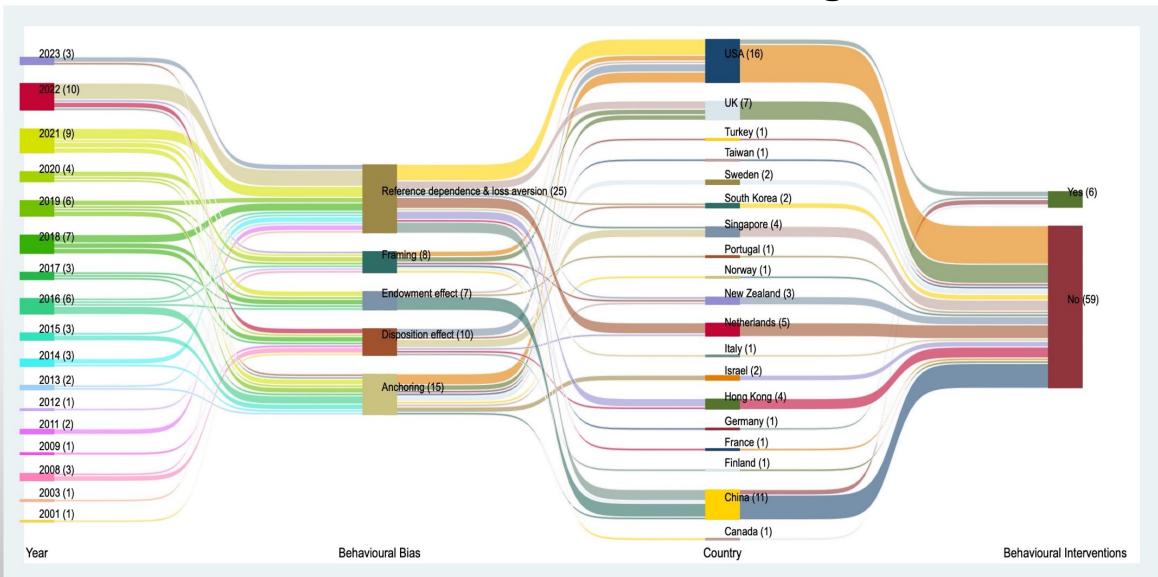

- Nudges (Thaler and Sunstein, 2008):
 - Choice architecture to induce desirable actions for both the individual and the society, such as using green electricity defaults to increase the uptake of renewable energy.
 - Manipulating tools. Easy and quick to implement, but the effects tend to be short-lived (Khanna, T. M., et al., 2021).
- Boosts (Grune-Yanoff and Hertwig, 2016),
 - Focus on changing existing behavioural heuristics or establishing new ones, such as providing home energy report with personalised energy use feedback and energy conservation information to encourage energy savings (Allcott and Rogers, 2014).
 - Empowering tools. Require more time and resources to affect behaviours, but tend to remain effective for a longer term because 'they have become routinised and have instilled a lasting competence in the user" (Lorenz-Spreen et al., 2020, page 1106).

Behavioural Interventions

Applications of behavioural interventions in urban studies

Khanna, T. M., et al. (2021). "A multi-country meta-analysis on the role of behavioural change in reducing energy consumption and CO2 emissions in residential buildings." *Nature Energy* 6(9): 925-932.

Behavioural Interventions

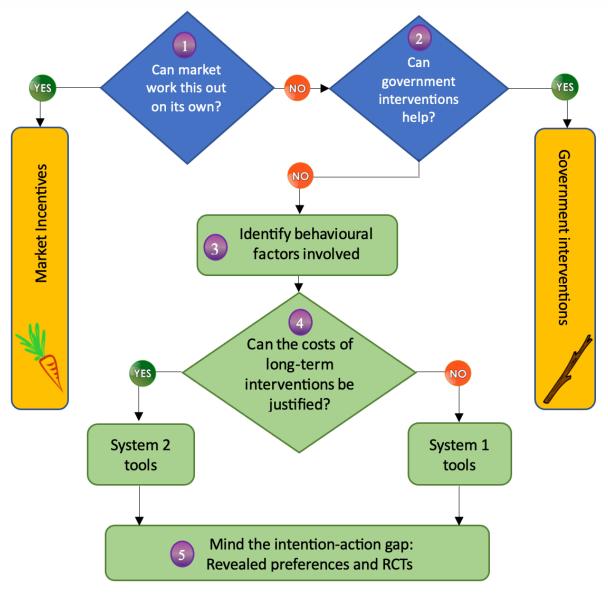

Applications of behavioural interventions in urban studies

Nisa, C. F., et al. (2019). "Metaanalysis of randomised controlled trials testing behavioural interventions to promote household action on climate change." <u>Nature</u> <u>Communications</u> **10**:4545.

Table 1 Effect sizes per key moderators

Moderator		k	N	Effect size d (CI)
Overall effect size		144	3,092,678	-0.093 (-0.160, -0.055)
Sensitivity analysis				
Sample type	Households	66	724,792	-0.112 (-0.221, -0.057)
	Individuals	78	2,367,886	-0.118 (-0.221, -0.060)
Sample size per condition	≤100	82	5709	-0.335 (0.555, -0.190)
]100, 500[45	22,840	-0.141 (-0.280, -0.063)
	≥500	17	3,074,121	-0.028 (-0.106, -0.006)
Self-selection	Self-selected	79	12,550	-0.279 (-0.465, -0.161)
	Naïve	65	3,080,128	-0.040 (-0.103, -0.016)
Region	Europe	43	2,333,441	-0.210 (-0.446, -0.093)
	US/Canada	78	750,854	-0.108 (-0.208, -0.054)
	Rest World	23	8383	-0.059 (-0.407, -0.013)
Behaviour ^a				
Energy		47	719,059	-0.094 (-0.133, -0.055)
	Appliances	12	108,077	-0.036 (-0.129, 0.058)
Transportation		29	2,245,972	-0.136 (-0.183, -0.089)
	Car use	21	2,242,781	-0.036 (-0.039, -0.034)
Water		42	124,082	-0.052 (-0.079, -0.025)
	Towel	18	8909	-0.168 (-0.271, -0.064)
Food waste		4	218	-0.231 (-0.518, 0.056)
Meat		7	666	-0.239 (-2.81, 0.008)
Recycling		23	2766	-0.457 (-0.595, -0.319)
Intervention				
Information		53	2,354,243	-0.048 (-0.075, -0.021)
Social comparison		32	719,756	-0.077 (-0.108, -0.046)
Engagement		38	10,486	-0.253 (-0.336, -0.170)
	Commitment	10	1446	-0.480 (-0.704, -0.255)
Appeals		10	5952	-0.266 (-0.445, -0.086)
Nudges		11	795	-0.352 (-0.492 ₅₂ -0.212)

Behavioural Studies in the housing market


Source: Helen X. H. Bao (2023) Between Carrots and Sticks, from Intentions to Actions: Behavioural Interventions for Housing Decisions. Available at SSRN: https://ssrn.com/abstract=4325333 or https://dx.doi.org/10.2139/ssrn.4325333

Applications in Land and Housing Studies

- ➤ More residential than commercial
- ➤ More individuals than institutions (micro- vs macro- behaviours)
- ➤ Lab experimental data are common (but not recommended)
- ➤ Geographical focus uneven: early evidence mainly from the US; lack of studies from the UK; growing number of papers using data from Asia.
- ➤ Advantages of using data from China: ethic approval; privacy; information protection; ...
- > Standard economic theory is a special case; there may be a day when all economics studies are behavioural.

Behavioural Interventions in the housing market

Classification	Relevant Behavioural Factors	Examples
System 1 Tools		
Nudge	Present bias Status quo bias Inertia	The combination of ordering and partitioning of insurance policy options improves health insurance decisions (Dellaert et al., 2023).
Social influence	Reference dependence Peer pressure Social norms Social comparison	Participants saved more when information about the progress toward their self-set savings goal is shared with another village member (Breza & Chandrasekhar, 2019).
Commitment device & reminders	Status quo bias Inertia Self-control Hyperbolic discounting	A simple commitment device (an individual lockbox) helps households to save more and to cope with the negative impacts of a health shock (Aker et al., 2020).
Appeals	Social norms Peer pressure	Messages regarding the public benefits of increased residential density reduced local residents' NIMBYism by four times the control message (Doberstein et al., 2016).
System 2 Tools		
Education & Awareness	Representative bias Status quo bias Present bias	Providing real-time feedback on the quantity of electricity consumption reduced electricity usage by 8 to 22 percent (Jessoe & Rapson, 2014).
Visualisation	Narrow framing Cognitive overloading Inattention Lack of attention	Interactive visualization of commute options is used as a behavioural intervention to increase home renters' willingness to travel more sustainably. Those in the visualization treatment group had significantly higher reported well-being after the move as well (Bhattacharyya et al 2019).
Gamification	Short-termism NIMBYism Intention-action gap Inertia	A gamified app influenced energy-saving behaviours and word-of-mouth, and resulted in significant monetary savings compared to a control group (Mulcahy et al., 2020).

Source: Helen X. H. Bao (2023) Between Carrots and Sticks, from Intentions to Actions: Behavioural Interventions for Housing Decisions. Available at

SSRN: https://ssrn.com/abstract=4325333 or https://dx.doi.org/10.2139/ssrn.4325333

My contribution to the literature

- 1. Helen X. H. Bao and Charlotte Chunming Meng (2023). Housing Wealth Distribution, Inequality, and Residential Satisfaction. *Regional Studies*, https://doi.org/10.1080/00343404.2022.2159938.
- 2. Helen X. H. Bao and Guy Robinson (2022). **Behavioural Land Use Policy Studies**: Past, Present, and Future. *Land Use Policy*, Volume 115, Article ID: 106013.
- 3. Helen X. H. Bao and Yi Lim (2022). **Behavioural Interventions** for Micro-mobility Adoption: Low-hanging Fruits or Hard Nuts to Crack? Transportation Research Part F: Traffic Psychology and Behaviour, Volume 84, 423 441.
- 4. Helen X. H. Bao and Joelle Ng (2022). Tradable Parking Permits as a Transportation Demand Management Strategy: A **Behavioural Investigation**. Cities, Volume 120, Article ID: 103463.
- 5. Helen X. H. Bao and Rufus Saunders (2021). Reference Dependence in the UK Housing Market. Housing Studies, forthcoming.
- 6. Helen X. H. Bao, Charlotte Chunming Meng, and Jing Wu (2021). **Reference Dependence and Loss Aversion** in Residential Property Development Decisions: Evidence from Beijing. *Journal of Housing and the Built Environment*, forthcoming.
- 7. Helen X. H. Bao and Steven H. Li (2020). **Investor Overconfidence** and Trading Activity in the Asia Pacific REIT Markets. *Journal of Risk* and Financial Management, 13(10), 232.
- 8. Helen X. H. Bao, Adam Brady and Ziyou Wang (2020). Pricing Efficiency and **Bounded Rationality**: Evidence Based on the Responses Surrounding GICS Real Estate Category Creation. *International Real Estate Review*, 23(1):663 689.
- 9. Yan J. and Helen X. H. Bao (2018). A **Prospect Theory-Based** Analysis of Housing Satisfaction with Relocations: Field Evidence from China. *Cities: The International Journal of Policy and Planning, 83: 193–202.*
- 10. Sally Monson, Helen X. H. Bao, and Colin Lizieri (2018). A **Behavioral Interpretation** of the NAV Discount Puzzle in Listed Real Estate Companies. *Journal of Real Estate Portfolio Management*, 24(2): 151-165.
- 11. Helen X. H. Bao and Charlotte C. Meng (2017). Loss Aversion and Housing Studies. *Journal of Real Estate Literature*, 25(1):49 75.
- 12. Helen X. H. Bao and Cynthia, M. Gong (2017). **Reference-dependent** Analysis of Capital Structure and REIT Performance. *Journal of Behavioral and Experimental Economics*, 69: 38–49.
- 13. Helen X. H. Bao and Cynthia, M. Gong (2016). **Endowment Effect** and Housing Decisions. *International Journal of Strategic Property Management*, 20(4):341-353.
- 14. M. Wang, Helen X. H. Bao and P. Lin (2015). **Behavioural Insights** into Housing Relocation Decisions: The Effects of the Beijing Olympics, *Habitat International*, 47: 20-28.
- 15. L. Feng, Helen X. H. Bao and Y. Jiang (2014). Land Reallocation Reform in Rural China: A Behavioral Economics Perspective, *Land Use Policy*, 41: 246 259.

The Way Forward

"Perhaps the greatest challenge facing behavioral economics is demonstrating its applicability in the real world. In nearly every instance, the strongest empirical evidence in favor of behavioral anomalies emerges from the lab. Yet, there are many reasons to suspect that these laboratory findings might fail to generalize to real markets."

- Levitt, S. D., and J. A. List. 2008. "Homo Economicus Evolves." *Science*, 319(5865): 909–10.

The Way Forward

One Swallow Doesn't Make a Summer: New Evidence on Anchoring Effects[†]

By Zacharias Maniadis, Fabio Tufano, and John A. List*

Some researchers have argued that anchoring in economic valuations casts doubt on the assumption of consistent and stable preferences. We present new evidence that explores the strength of certain anchoring results. We then present a theoretical framework that provides insights into why we should be cautious of initial empirical findings in general. The model importantly highlights that the rate of false positives depends not only on the observed significance level, but also on statistical power, research priors, and the number of scholars exploring the question. Importantly, a few independent replications dramatically increase the chances that the original finding is true. (JEL D12, C91)

Source: The American Economic Review, Vol. 104, No. 1 (JANUARY 2014), pp. 277-290

Session Summary

- Behavioural sciences defined
- Behavioural theories and models
- Behavioural research methods
- > Applications of behavioural insights in housing studies
- The way forward