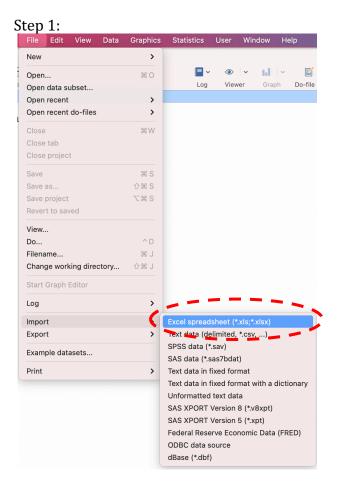
**RM01** Research Methods

### **STATA Exercises**

# **STATA Exercises Solutions**

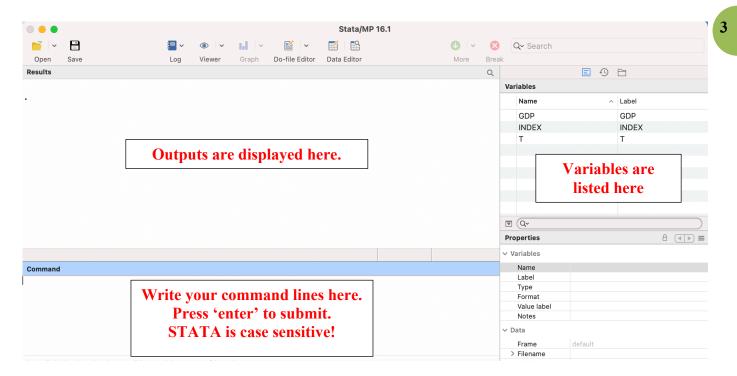
(Version: November 2021)

By Helen Bao


**Department of Land Economy** 

**University of Cambridge** 

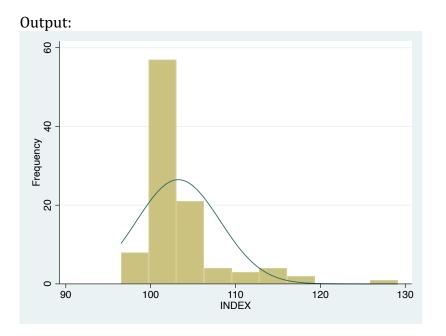
1


### **STATA Exercises**

- 1. Quarterly data on property price index and GDP are given in Worksheet 'example1'. Variable T is a quarterly time index (e.g., T = 1 for the first quarter). Use STATA to complete the following tasks.
  - a) Open the file in STATA and view the data



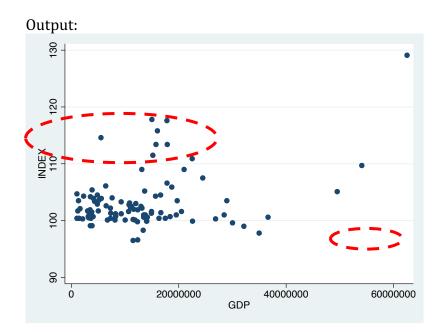
Step 2: Click 'Browse' to locate the file. Check the 'Import first row as variable names' box.


|                   | I file:  |               |      | /                                            |        |
|-------------------|----------|---------------|------|----------------------------------------------|--------|
| /Use              | ers/hele | nbao/Dropb    | ox ( | nal)/Teaching/RM01 Research Method I/2020/ST | Browse |
| Work              | sheet:   |               |      | Cell range:                                  | -      |
| Example 1 A1:C101 |          |               |      | A1:C101                                      |        |
|                   |          | rst row as va |      | mes Variable case:                           |        |
|                   |          |               |      |                                              |        |
| In                | nport al | l data as str | ings | preserve 😒                                   |        |
| Previ             | ew: (sh  | owing rows    | 2-5  | )1)                                          |        |
|                   | INDEX    | GDP           | т    |                                              |        |
| 2                 | 101      | 28456500      | 1    |                                              |        |
| 3                 | 100.7    | 18401000      | 1    |                                              |        |
| 4                 | 103.1    | 10854284      | 1    |                                              |        |
| 5                 | 99.1     | 3863400       | 1    |                                              |        |
| 6                 | 100.3    | 2111188       | 1    |                                              |        |
| 7                 | 101.9    | 12364727      | 1    |                                              |        |
| 8                 | 96.6     | 12356400      | 1    |                                              |        |
| 9                 | 100.1    | 10030125      | 1    |                                              |        |
| 10                | 102.5    | 11201156      | 1    |                                              |        |
| 10                |          |               |      |                                              |        |



b) Create a histogram of variable INDEX

STATA command:






c) Create a scatter plot between INDEX and GDP

STATA command:

#### twoway (scatter INDEX GDP)



d) Generate descriptive statistics for INDEX and GDP

STATA command:

#### summarize INDEX GDP

Output:

| Variable | Obs | Mean     | Std. Dev. | Min     | Max      |
|----------|-----|----------|-----------|---------|----------|
| INDEX    | 100 | 103.26   | 4.911911  | 96.5    | 129.1    |
| GDP      | 100 | 1.31e+07 | 1.09e+07  | 1044875 | 6.25e+07 |

e) Generate frequency statistics for T

STATA command:

tabulate T

Output:

| т     | Freq. | Percent | Cum.   |
|-------|-------|---------|--------|
| 1     | 35    | 35.00   | 35.00  |
| 2     | 35    | 35.00   | 70.00  |
| 3     | 30    | 30.00   | 100.00 |
| Total | 100   | 100.00  |        |

4

f) Generate two new variables:  $T2 = T^*T$ , and LNGDP = ln(GDP)

5

STATA command:

generate T2 = T\*T
generate LNGDP = ln(GDP)

Outputs:

|                          |            |        |       |                | Stata/MP 1  | 6.1 |      |       |           |             |         |
|--------------------------|------------|--------|-------|----------------|-------------|-----|------|-------|-----------|-------------|---------|
| <b>i</b> v 🗄             | <b>- -</b> | ۰ 🔹    |       | <b>V</b>       |             | (   | 9 -  | 8     | Q~ Search |             |         |
| Open Save                | Log        | Viewer | Graph | Do-file Editor | Data Editor |     | More | Break |           |             |         |
| Results                  |            |        |       |                |             |     |      | Q     |           | <b>E</b> 49 | 8       |
|                          |            |        |       |                |             |     |      | •     | Variables |             |         |
| generate T2 = T*T        |            |        |       |                |             |     |      |       | Name      | ^           | Label   |
| generate LNGDP = ln(GDP) |            |        |       |                |             |     |      | 4     | GDP       | 1           | GDP     |
| generate Enobl - th(obl) |            |        |       |                |             |     |      | 1     | INDEX     | •           | INDEX   |
|                          |            |        |       |                |             |     |      | 1     | LNGDP     |             |         |
|                          |            |        |       |                |             |     |      | 1     | т         |             | Т       |
|                          |            |        |       |                |             |     |      |       | T2        | /           |         |
|                          |            |        |       |                |             |     |      |       | 1-1       |             |         |
|                          |            |        |       |                |             |     |      |       |           |             |         |
|                          |            |        |       |                |             |     |      |       |           |             |         |
|                          |            |        |       |                |             |     |      | -     |           |             |         |
|                          |            |        |       |                |             |     |      | (     | ▼ (Q~     |             |         |
|                          |            |        |       |                |             |     |      |       |           |             | · · · · |

g) Estimate the regression model  $INDEX = \beta_0 + \beta_1 GDP + \beta_2 T + \beta_3 T2 + \varepsilon$ , where T2 is T squared. Obtain collinearity statistics and autocorrelation test statistics

STATA commands:

reg INDEX GDP T T2 vif generate YEAR = \_n tsset YEAR estat dwatson

#### Output: . reg INDEX GDP T T2

| Source   | ss         | df        | MS         | Number of obs   | _    | 100       |
|----------|------------|-----------|------------|-----------------|------|-----------|
| Source   |            |           | 115        | - F(3, 96)      | _    | 7.62      |
| Model    | 459.488651 | 3         | 153.162884 |                 | =    | 0.0001    |
| Residual | 1929.07135 | 96        | 20.0944932 | R-squared       | =    | 0.1924    |
|          |            |           |            | - Adj R-squared | =    | 0.1671    |
| Total    | 2388.56    | 99        | 24.1268687 | Root MSE        | =    | 4.4827    |
| INDEX    | Coef.      | Std. Err. | t          | P> t  [95% Co   | onf. | Interval] |
| GDP      | 1.39e-07   | 4.21e-08  | 3.30       | 0.001 5.55e-0   | 98   | 2.23e-07  |
| т        | 0776739    | 3.780335  | -0.02      | 0.984 -7.581    | 58   | 7.426232  |
| T2       | .4076264   | .9422173  | 0.43       | 0.666 -1.4620   | 56   | 2.277913  |
| 12       |            |           |            |                 |      |           |

. vif

| Variable | VIF   | 1/VIF    |
|----------|-------|----------|
| Т2       | 46.16 | 0.021665 |
| т        | 46.05 | 0.021716 |
| GDP      | 1.04  | 0.961352 |
| Mean VIF | 31.08 |          |

. generate YEAR = \_n

. tsset YEAR time variable: YEAR, 1 to 100 delta: 1 unit

. estat dwatson

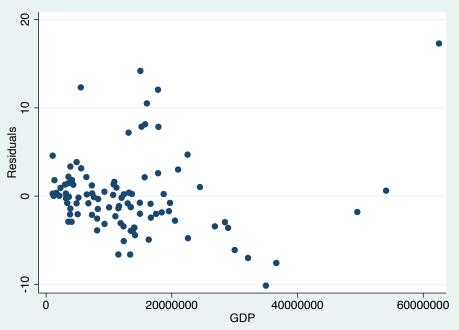
Durbin-Watson d-statistic( 4, 100) = 1.59622

h) Use stepwise selection method to determine the best set of regressors to predict the value of INDEX

6

STATA commands:

#### sw, pe(0.05) pr(0.10): reg INDEX GDP T T2 LNGDP


Outputs (Stepwise selection):

```
. sw, pe(0.05) pr(0.10): reg INDEX GDP T T2 LNGDP
                      begin with full model
p = 0.9644 >= 0.1000 removing T
 = 0.1136 >= 0.1000 removing LNGDP
     Source
                     SS
                                  df
                                           MS
                                                   Number of obs
                                                                           100
                                                                   =
                                                   F(2, 97)
                                                                         11.55
                                                                   =
      Model
                459.480168
                                   2 229.740084
                                                   Prob > F
                                                                        0.0000
                                                                   =
                1929.07983
                                     19.8874209
   Residual
                                  97
                                                   R-squared
                                                                         0.1924
                                                                   =
                                                   Adj R-squared
                                                                         0.1757
                                                                   =
                   2388.56
                                     24.1268687
      Total
                                                   Root MSE
                                                                         4.4595
                                  99
                                                                   =
      INDEX
                                                          [95% Conf. Interval]
                            Std. Err.
                                                P>|t|
                    Coef.
                                           t
         GDP
                 1.39e-07
                            4.19e-08
                                         3.32
                                                0.001
                                                          5.60e-08
                                                                      2.22e-07
                                         2.76
         Т2
                  .388486
                           .1406687
                                                0.007
                                                          .1092976
                                                                      .6676745
       _cons
                 99.71299
                            .8700331
                                      114.61
                                                0.000
                                                          97.98622
                                                                      101.4398
```

i) Generate a scatter plot between the residuals and GDP for the regression model *INDEX* =  $\beta_0 + \beta_1 GDP + \beta_2 T + \varepsilon$ .

STATA commands: reg INDEX GDP T predict res, residuals twoway (scatter res GDP)

Output:



j) Perform a White heteroskedasticity test on the model *INDEX* =  $\beta_0 + \beta_1 GDP + \beta_2 T + \varepsilon$ .

### STATA commands: estat imtest,white

#### Output:

| ite's test for Ho:   | homoskedastici | tv            |             |
|----------------------|----------------|---------------|-------------|
|                      | unrestricted h | -             | edastici    |
| chi2(5)              | = 39.59        | ,             |             |
| Prob > chi2          | = 0.0000       |               |             |
| ameron & frivedi's d | ecomposition o | ⊤ IM-te       | st          |
| Source               | chi2           | f IM-te<br>df | p           |
|                      |                |               |             |
| Source               | chi2           | df            | p           |
| Heteroskedasticity   | chi2<br>39.59  | df<br>5       | p<br>0.0000 |

Because the Chi square test statistic is significant at the 5% level, the model suffers from heteroskedasticity problem. This may be caused by the interaction term between GDP and T, as the coefficient estimate of GDPT is significant.

k) Perform a RESET test on the final model from part h)

```
STATA commands:

estat ovtest

Outputs:

Ramsey RESET test using powers of the fitted values of INDEX

Ho: model has no omitted variables

F(3, 94) = 7.64
```

Prob > F =

Reject the null hypothesis. The model has misspecification problems.

0.0001

l) Perform a predictive failure test on the model *INDEX* =  $\beta_0 + \beta_1 GDP + \beta_2 T + \varepsilon$ . Reserve the last 10 observations for the test.

Step 1: Estimate the reduced model (*INDEX* =  $\beta_0 + \beta_1 GDP + \beta_2 T + \varepsilon$ ) by using the first 90 observations only.

STATA commands: reg INDEX GDP T if \_n<91

. reg INDEX GDP T if n<91

Model 1 Outputs (using the first 90 observations):

| Source     | SS                       | df | MS         | Number of obs | = | 90     |
|------------|--------------------------|----|------------|---------------|---|--------|
|            |                          |    |            | F(2, 87)      | = | 13.19  |
| Model      | 528.676429               | 2  | 264.338214 | Prob > F      | = | 0.0000 |
| Residual 4 | 528.676429<br>1743.50846 | 87 | 20.0403271 | R-squared     | = | 0.2327 |
|            |                          |    |            | Adj R-squared | = | 0.2150 |
| Total      | 2272.18489               | 89 | 25.5301673 | Root MSE      | = | 4.4766 |

7

Step 2: Estimate Model 2 (*INDEX* =  $\beta_0 + \beta_1 GDP + \beta_2 T + \varepsilon$ ) using all 100 observations.

8

#### STATA commands: reg INDEX GDP T

Model 2 Outputs (using all 100 observations):

| . reg INDEX GDP T |            |    |            |               |   |        |  |  |  |  |
|-------------------|------------|----|------------|---------------|---|--------|--|--|--|--|
| Source            | SS         | df | MS         | Number of obs | = | 100    |  |  |  |  |
|                   |            |    |            | F(2, 97)      | = | 11.44  |  |  |  |  |
| Model             | 455,727685 | 2  | 227.863842 | Prob > F      | = | 0.0000 |  |  |  |  |
| Residual          | 1932.83232 | 97 | 19.9261063 | R-squared     | = | 0.1908 |  |  |  |  |
|                   |            |    |            | Adj R-squared | = | 0.1741 |  |  |  |  |
| Total             | 2388.56    | 99 | 24.1268687 | Root MSE      | = | 4.4639 |  |  |  |  |

$$F = \frac{(1932.832 - 1743.508)/10}{1743.508/87} = \frac{18.932}{20.040} = 0.9447 < FINV(0.05,10,87) = 1.9413$$

Do not reject the null hypothesis. The model predicts well.

m) Test if there is a structural break at GDP = 30,000,000.

```
STATA commands:
generate BREAK=0
replace BREAK=1 if GDP>30000000
generate TBREAK = T*BREAK
generate GDPBREAK=GDP*BREAK
reg INDEX GDP T
reg INDEX GDP T BREAK GDPBREAK TBREAK
```

Outputs:

New variables

|    | INDEX | GDP      | Т | INDEXD | INDEXDHAT | BREAK | TBREAK | GDPBREAK |
|----|-------|----------|---|--------|-----------|-------|--------|----------|
| 34 | 104.7 | 1048208  | 1 | 1      | .1581664  | 0     | 0      | 0        |
| 35 | 100.7 | 3150000  | 1 | 0      | .1658486  | 0     | 0      | 0        |
| 36 | 99    | 32127100 | 2 | 0      | .4671632  | 1     | 2      | 3.21e+07 |
| 37 | 101.6 | 20511600 | 2 | 0      | .3907148  | 0     | 0      | 0        |
| 38 | 100.1 | 11868132 | 2 | 0      | .3369195  | 0     | 0      | 0        |
| 39 | 103.4 | 4328880  | 2 | 1      | .2931648  | 0     | 0      | 0        |
| 40 | 101.7 | 3167000  | 2 | 0      | .286724   | 0     | 0      | 0        |
| 41 | 99.9  | 14000238 | 2 | 0      | .3498632  | 0     | 0      | 0        |
| 42 | 99.9  | 14061000 | 2 | 0      | .3502354  | 0     | 0      | 0        |
| 43 | 96.5  | 11501802 | 2 | 0      | .3347194  | 0     | 0      | 0        |
| 44 | 99.8  | 12321276 | 2 | 0      | .3396509  | 0     | 0      | 0        |
| 45 | 109.7 | 54087600 | 2 | 1      | .6129658  | 1     | 2      | 5.41e+07 |
| 46 | 102.5 | 12975725 | 2 | 0      | .3436145  | 0     | 0      | 0        |
| 47 | 106.6 | 17818302 | 2 | 1      | .3735935  | 0     | 0      | 0        |
| 48 | 117.8 | 15003435 | 2 | 1      | .3560322  | 0     | 0      | 0        |
| 40 | 102 0 | 1120065  | Э | 1      | 2020456   | A     | A      | A        |

Reduced model:  $INDEX = \beta_0 + \beta_1 GDP + \beta_2 T + \varepsilon$ 

| . reg INDEX G | р т                 |           |            |               |         |           |
|---------------|---------------------|-----------|------------|---------------|---------|-----------|
| Source        | SS                  | df        | MS         | Number of a   | bs =    | 100       |
|               |                     |           |            | - F(2, 97)    | =       | 11.44     |
| Model         | 455.727 <u>68</u> 5 | 2         | 227.863842 | Prob > F      | =       | 0.0000    |
| Residual      | 1932.83232          | 97        | 19.9261063 | R-squared     | =       | 0.1908    |
|               |                     |           |            | - Adj R-squar | ed =    | 0.1741    |
| Total         | 2388.56             | 99        | 24.1268687 | Root MSE      | =       | 4.4639    |
| INDEX         | Coef.               | Std. Err. | t          | P> t  [95%    | G Conf. | Interval] |
| GDP           | 1.40e-07            | 4.19e-08  | 3.34       | 0.001 5.70    | e-08    | 2.23e-07  |
| т             | 1.539271            | .5649354  | 2.72       | 0.008 .418    | 0305    | 2.660511  |
| _cons         | 98.42743            | 1.218401  | 80.78      | 0.000 96.0    | 0924    | 100.8456  |

Full model:  $INDEX = \beta_0 + \beta_1 GDP + \beta_2 T + \beta_3 BREAK + \beta_4 GDPBREAK + \beta_5 TBREAK + \varepsilon$ . reg index gdp t break gdpbreak tbreak

| Source                                           | SS                                                                    | df                                                                  | MS                                             |                                                    | Number of obs<br>F(5, 94)<br>Prob > F<br>R-squared<br>Adj R-squared<br>Root MSE |                          | 100<br>11.56                                                          |
|--------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------|
| Model<br>Residual                                | 909.611055<br>41478.94895                                             | 5<br>94                                                             | 181.922211<br>15.7334994                       | . Prob<br>R-sq                                     |                                                                                 |                          | 0.0000<br>0.3808<br>0.3479                                            |
| Total                                            | 2388.56                                                               | 99                                                                  | 24.1268687                                     | -                                                  |                                                                                 |                          | 3.9665                                                                |
|                                                  |                                                                       |                                                                     |                                                |                                                    |                                                                                 |                          |                                                                       |
| INDEX                                            | Coef.                                                                 | Std. Err.                                                           | t                                              | P> t                                               | [95% C                                                                          | ont.                     | Interval]                                                             |
| GDP<br>T<br>BREAK<br>GDPBREAK<br>TBREAK<br>_cons | 1.05e-07<br>1.588375<br>-34.95293<br>6.94e-07<br>1.786009<br>98.87681 | 6.25e-08<br>.5186607<br>7.70962<br>1.44e-07<br>2.204446<br>1.174234 | 1.67<br>3.06<br>-4.53<br>4.82<br>0.81<br>84.21 | 0.098<br>0.003<br>0.000<br>0.000<br>0.420<br>0.000 | -1.96e-<br>.55856<br>-50.260<br>4.08e-<br>-2.590<br>96.545                      | 518<br>956<br>-07<br>997 | 2.29e-07<br>2.618188<br>-19.64529<br>9.80e-07<br>6.162989<br>101.2083 |

$$F = \frac{(1932.832 - 1478.949)/3}{1478.949/94} = \frac{151.294}{15.733} = 9.616 > FINV(0.05,3,94) = 2.7014.$$

Reject the null hypothesis. There is a structure break at GDP = 30,000,000.

Alternatively, use the following command line to obtain the test result directly.

#### test BREAK GDPBREAK TBREAK

```
Outputs:

. test BREAK GDPBREAK TBREAK

( 1) BREAK = 0

( 2) GDPBREAK = 0

( 3) TBREAK = 0

F( 3, 94) = 9.62

Prob > F = 0.0000
```

n) Create dummy variables for T

| STATA commands:                     |
|-------------------------------------|
| <pre>tabulate T, generate(TD)</pre> |

| Out | Outputs:  |     |           |        |  |  |  |  |
|-----|-----------|-----|-----------|--------|--|--|--|--|
|     |           | E 🕄 | $\square$ |        |  |  |  |  |
| Var | Variables |     |           |        |  |  |  |  |
|     | Name      | ^   | Label     |        |  |  |  |  |
|     | GDP       |     | GDP       |        |  |  |  |  |
|     | INDEX     |     | INDEX     | <      |  |  |  |  |
|     | LNGDP     |     |           |        |  |  |  |  |
|     | Т         |     | Т         |        |  |  |  |  |
|     | T2        |     |           |        |  |  |  |  |
|     | TD1       |     | T==       | 1.0000 |  |  |  |  |
|     | TD2       |     | T==       | 2.0000 |  |  |  |  |
|     | TD3       |     | T==       | 3.0000 |  |  |  |  |
|     | YEAR      |     |           |        |  |  |  |  |
|     | res       |     | Residu    | uals   |  |  |  |  |
|     |           |     |           |        |  |  |  |  |

o) Estimate a regression model using the group of dummy variables created in part n)

## STATA commands: reg INDEX GDP i.T

| Outputs:<br>. reg INDEX GD | DP i.T     |           |            |        |           |     |           |
|----------------------------|------------|-----------|------------|--------|-----------|-----|-----------|
| Source                     | SS         | df        | MS         | Numb   | er of obs | =   | 100       |
|                            |            |           |            | – F(3, | 96)       | =   | 7.62      |
| Model                      | 459.488651 | 3         | 153.162884 | Prob   | > F       | =   | 0.0001    |
| Residual                   | 1929.07135 | 96        | 20.0944932 | R-sq   | uared     | =   | 0.1924    |
|                            |            |           |            | – Adji | R-squared | =   | 0.1671    |
| Total                      | 2388.56    | 99        | 24.1268687 | Root   | MSE       | =   | 4.4827    |
| INDEX                      | Coef.      | Std. Err. | t          | P> t   | [95% Cor  | nf. | Interval] |
| GDP                        | 1.39e-07   | 4.21e-08  | 3.30       | 0.001  | 5.55e-08  | 3   | 2.23e-07  |
| т                          |            |           |            |        |           |     |           |
| 2                          | 1.145205   | 1.073097  | 1.07       | 0.289  | 9848753   | 3   | 3.275286  |
| 3                          | 3.105663   | 1.136365  | 2.73       | 0.007  | .8499959  | •   | 5.36133   |
| _cons                      | 100.1095   | .8891826  | 112.59     | 0.000  | 98.34451  | L   | 101.8745  |

You may use **reg INDEX GDP ib3.T** to omit T=3 as the base category.

| Source   | SS         | df        | MS         |       | er of obs          | =   | 100<br>7.62 |
|----------|------------|-----------|------------|-------|--------------------|-----|-------------|
| Model    | 459.488651 | 3         | 153.162884 |       | > F                | =   | 0.0001      |
| Residual | 1929.07135 | 96        | 20.0944932 |       | uared<br>R-squared | =   |             |
| Total    | 2388.56    | 99        | 24.1268687 | -     | •                  | =   |             |
|          |            |           |            |       |                    |     |             |
| INDEX    | Coef.      | Std. Err. | t          | P> t  | [95% Cor           | nf. | Interval]   |
| GDP      | 1.39e-07   | 4.21e-08  | 3.30       | 0.001 | 5.55e-08           | 3   | 2.23e-07    |
| т        |            |           |            |       |                    |     |             |
| 1        | -3.105663  | 1.136365  | -2.73      | 0.007 | -5.36133           | 3   | 8499959     |
| 2        | -1.960458  | 1.126798  | -1.74      | 0.085 | -4.197133          | 3   | .2762176    |
| _cons    | 103.2152   | 1.065968  | 96.83      | 0.000 | 101.0993           | 3   | 105.3311    |

p) Create a dummy variable INDEXD, which equals one when INDEX > 103 and zero otherwise

STATA commands: generate INDEXD=0 replace INDEXD=1 if INDEX > 103

. reg INDEX GDP ib3.T

Outputs:

|           | Ξ | Ð |       |        |
|-----------|---|---|-------|--------|
| Variables |   |   |       |        |
| Name      |   | ^ | Label |        |
| GDP       |   |   | GDP   |        |
|           |   |   | INDE  | X      |
| INDEXD    | > |   |       |        |
| LNGDP     |   |   |       |        |
| Т         |   |   | Т     |        |
| T2        |   |   |       |        |
| TD1       |   |   | T==   | 1.0000 |
| TD2       |   |   | T==   | 2.0000 |
| TD3       |   |   | T==   | 3.0000 |
| YEAR      |   |   |       |        |
| res       |   |   | Resid | uals   |
|           |   |   |       |        |

q) Estimate a logit model by using INDEXD as the dependent variable, and T and GDP as the independent variables

STATA commands: logit INDEXD GDP T

| Outputs:<br>. logit INDEX | ) GDP T, nolog | I         |       |          |        |       |           |
|---------------------------|----------------|-----------|-------|----------|--------|-------|-----------|
| Logistic regre            | ession         |           |       | Number o | of obs | =     | 100       |
|                           |                |           |       | LR chi2( | 2)     | =     | 9.78      |
|                           |                |           |       | Prob > c | hi2    | =     | 0.0075    |
| Log likelihood            | d = -59.854919 |           |       | Pseudo F | 2      | =     | 0.0755    |
|                           |                |           |       |          |        |       |           |
| INDEXD                    | Coef.          | Std. Err. | z     | P> z     | [95%   | Conf. | Interval] |
| GDP                       | 2.69e-08       | 2.05e-08  | 1.31  | 0.190    | -1.33e | -08   | 6.72e-08  |
| Т                         | .7035333       | .2827923  | 2.49  | 0.013    | .1492  | 707   | 1.257796  |
| _cons                     | -2.403693      | .6610158  | -3.64 | 0.000    | -3.69  | 926   | -1.108126 |

r) Predict the value of INDEXD when T = 1, 2, and 3 and GDP = 30,000,000

STATA commands:

```
set obs `=_N+3'
replace GDP=30000000 if missing(INDEX)
forvalues i=1(1)3 {
         replace T=`i' if_n==100+`i'
         }
predict INDEXDHAT
```

| 0 | ut | pι | ıts | : |
|---|----|----|-----|---|
|   |    |    |     |   |

|     | INDEX | GDP      | т | INDEXD | INDEXDHAT |
|-----|-------|----------|---|--------|-----------|
| 91  | 104.5 | 16621797 | 3 | 1      | .5385443  |
| 92  | 101.2 | 9294858  | 3 | 0      | .4892992  |
| 93  | 97.8  | 34968787 | 3 | 0      | .6566758  |
| 94  | 103.5 | 28954070 | 3 | 1      | .6192948  |
| 95  | 101.7 | 5025271  | 3 | 0      | .4606373  |
| 96  | 104.3 | 2288595  | 3 | 1      | .44239    |
| 97  | 110.9 | 22505600 | 3 | 1      | .5775973  |
| 98  | 105.9 | 18708046 | 3 | 1      | .5524712  |
| 99  | 101.5 | 3809191  | 3 | 0      | .4525129  |
| 100 | 100.3 | 8120121  | 3 | 0      | .4813981  |
| 101 | •     | 30000000 | 1 | 1      | .2906258  |
| 102 | •     | 30000000 | 2 | 1.     | .4529364  |
| 103 |       | 3000000  | 3 |        | .6259123  |