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¡ Time-Varying Volatility
¡ The ARCH Model
¡ Testing, Estimating, and Forecasting
¡ Extensions

¡ ARCH (q)
¡ GARCH
¡ T-GARCH 
¡ GARCH in Mean
¡ … …

Outline
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Time-Varying	Volatility
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Simulated examples of constant and time-varying variances

Time-Varying	Volatility
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Autoregressive conditional heteroskedastic
(ARCH) model
Deals with stationary series, but with conditional 
variances that change over time
Consider a model with an AR(1) error term:

The unconditional mean of the error is:

The conditional mean for the error is:

The	ARCH	Model
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The unconditional variance of the error is:

The conditional variance for the error is: 

The	ARCH	Model
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Suppose that instead of a conditional mean that 
changes over time we have a conditional variance 
that changes over time
Consider the AR(1) model on slide 7:

ARCH: time-varying variances 
(heteroskedasticity) that depend on (are 
conditional on) lagged effects (autocorrelation)

The	ARCH	Model
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The ARCH model is useful for modeling volatility and 
especially changes in volatility over time
The ARCH model is intuitively appealing because it 
seems sensible to explain volatility as a function of the 
errors et

– These errors are often called ‘‘shocks’’ or ‘‘news’’ 
by financial analysts
• They represent the unexpected!

– According to the ARCH model, the larger the 
shock, the greater the volatility in the series

– This model captures volatility clustering, as big 
changes in et are fed into further big changes in ht
via the lagged effect  et-1

The	ARCH	Model
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Testing: Lagrange multiplier (LM) test for ARCH
Test equation:
Hypotheses:
Example: Shares of Brighten Your Day (BYD) 
Lighting

Testing,	Estimating,	and	Forecasting

Time series of returns for BYD Lighting
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The results for an ARCH test are:

– The t-statistic suggests a significant first-order 
coefficient

– The sample size is 500, giving LM test value of   
(T – q)R2 = 62.16

– Comparing the computed test value to the 5% 
critical value of a χ2

(1) distribution                          
(χ2

(0.95, 1)= 3.841) leads to the rejection of the null 
hypothesis

– The residuals show the presence of ARCH(1) 
effects.

Testing,	Estimating,	and	Forecasting
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Estimating: maximum likelihood method
Example: Brighten Your Day (BYD) Lighting
The estimated models are: 

The forecast return and volatility are: 

Testing,	Estimating,	and	Forecasting
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The forecast return and volatility are: 

Testing,	Estimating,	and	Forecasting
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From ARCH(1) to ARCH(q):
Functional form: 

Testing, estimating, and forecasting, are natural 
extensions of the case with one lag
One of the shortcomings of an ARCH(q) model is 
that there are q + 1 parameters to estimate, which 
may lose accuracy in the estimation
The generalized ARCH model, or GARCH, is an 
alternative way to capture long lagged effects with 
fewer parameters

Extensions
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From ARCH(q) to GARCH (1, 1) model
Re-write                                                     as:

Extensions
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GARCH (1, 1) model
– The model is a very popular specification 

because it fits many data series well
– It tells us that the volatility changes with lagged 

shocks (e2 t-1) but there is also momentum in the 
system working via ht-1

– One reason why this model is so popular is that  
it can capture long lags in the shocks with only 
a few parameters

Extensions
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GARCH (1, 1) model
Example: Brighten Your Day (BYD) Lighting
The estimated model is: 

Extensions
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The threshold ARCH model, or T-ARCH
Positive and negative news are treated 
asymmetrically
The specification of the conditional variance is:

Extensions
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The threshold ARCH model, or T-ARCH
Example: Brighten Your Day (BYD) Lighting
The estimated model is: 

Extensions
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GARCH-in-mean model
Captures the relationship between risk and return 
(variance and mean)
The functional form is: 

Extensions

𝑦! = 𝛽" + 𝜃ℎ! + 𝑒!
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GARCH-in-mean model
Example: Brighten Your Day (BYD) Lighting
The estimated model is: 

Extensions
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¡ Time-Varying Volatility
¡ The ARCH Model
¡ Testing, Estimating, and Forecasting
¡ Extensions

¡ ARCH (q)
¡ GARCH
¡ T-GARCH 
¡ GARCH in Mean

Summary


