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SSRMC Outline

® VEC and VAR Models

® Estimating a Vector Error Correction Model

m Estimating a VAR Model

® Impulse Responses and Variance Decomposition
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SSRMC

VEC and VAR Models

B Some jargons:

miny =B,+Bx +¢, ¢ ~N(0,6]) we normalized
on y.

mlnx =B, +B, v +e, e ~N(0,c>)we normalized
on Xx.

B Univariate analysis examines a single data series

B Bivariate analysis examines a pair of series

B Vector analysis examines a number of series: one,
two, or more

B Vector analysis 1s a generalization of the
univariate and bivariate analyses
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SSRMC

VEC and VAR Models

B Consider a vector autoregression (VAR) model:

Ve =B + By HBx V)

X, =P +BuYiy +PpXy +V;
B Since the maximum lag is of order 1, we have a
VAR(1)

B If y and x are I(1) and not cointegrated, estimate
the following model simultaneously

Ay, =B, Ay, +B,Ax, + VtAy

Ax, =B, Ay, +PLAx,_ + VtAx
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SSRMC

VEC and VAR Models

B If y and x are I(1) and cointegrated, we can
estimate a vector error correction (VEC) model

B For example, y, and x, are integrated of order 1 so
that Vi = Bo +let Te

B The VEC model is:
Ay, =0+ 0y, (Y, =By —Bix,) +v)

Ax, = dy, + a‘21(yt—1 — Bo — let—l) + Vtx

B The coefficients o, o,; are known as error
correction coefficients. a;; should be negative, and
the rest of the EC coefficients should be positive
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SSRMC Estimating a VEC Model

B A two step least squares procedure:

— Use least squares to estimate the cointegrating
relationship and generate the lagged residuals

ét: Vi _bo _blxt
— Use least squares to estimate the equations:
— ~ Yy
Ay, =0y, +04y,6, +V,

—_— A X
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SSRMC

Estimating a VEC Model

B Example: Quarterly real GDP of a small economy
(Australia) and a large economy (US)
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SSRMC

Estimating a VEC Model

B Example: Quarterly real GDP of Australia & US

B Step 1: check for cointegration (the intercept term
1s omitted because 1t has no economic meaning):

4, =0.985U,
B The Unit Root test result 1s:

A =-.1286
(tau) (—2.889)

B As the critical value 1s -2.76, reject the null
hypothesis. The two series are cointegrated.
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SSRMC

Estimating a VEC Model

B Example: Quarterly real GDP of Australia & US
B Step 2: estimate a VEC model for {4,, U} :

AA, = —0.0646 — 0.1280&,_1 — 0.0021AA,_; + 0.2064AU,_,
) (3.52)  (-0.02)  (1.63)

AU, = 0.2266 — 0.03508,_; + 0.0791AA4,_; + 0.1040AU,_,
) (-1.17)  (0.82) (2.19)

B Note that the first EC coefficient 1s negative and
significant. The quarterly adjustment of 4;1s about 10% of
the deviation of 4, ; from its cointegrating value 0.985U ;.

B The second EC coefficient 1s insignificant.

B Small economy 1s likely to react to economic conditions 1n
the large economy, but not vice versa.
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SSRMC

Estimating a VAR Model

B A two step least squares procedure:

— Transform non-stationary variables to
stationary variables by first differencing

Ayt: Ve = Vs Axt:xt — X

— Estimate a VAR model for the set of 1(0)
variables derived above.
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SSRMC

Estimating a VAR Model

B Example: Real personal disposable income (YY)
and real personal consumption expenditure (C)

B ADF test for Y and C: both are I(1)

Variable Test statistic P-value
Y -2.741 0.068
C -1.995 0.289
AY -3.529 <0.001
AC -5.045 <0.001

B Check for cointegration: not cointegrated
é =C, +0.404—1.035Y,

Ae, =—0.088¢e,_, —0.299A¢, |
(tau) (—2.873)

Critical value: -3.37
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SSRMC Estimating a VAR Model

B Example: Real personal disposable income (YY)
and real personal consumption expenditure (C)
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SSRMC

Estimating a VAR Model

B Use LM test to select lag length. The VAR model 1s
estimated as:

AC, =0.005+0.215AC,_, +0.149AY_,
(t) (6.969) (2.884)  (2.587)

AY =0.006+0.475AC,_, —0.217AY,_,
(£) (6.122) (4.885)  (2.889)

B Past changes in C have positive effects on current changes
in both C and Y.

B Past changes in Y have positive effects on current changes
in C, but negative effect on Y.

Time Series Analysis Page 13




SSRMC | Impulse Responses and Variance Decompositions

B Useful tools 1n macroeconomics

B Analyze problems such as the effect of an o1l price
shock on inflation and GDP growth, and the effect of a
change in monetary policy on the economy

B Impulse response functions show the effects of shocks
on the adjustment path of the variables

B Variance decompositions show the effects of shocks
on the forecast error variance

B A VAR model tells whether series are significantly
related to each other; an impulse response analysis
shows how series react dynamically to shocks; a

variance decomposition analysis 1s informative about
the sources of volatility

| Time Series Analysis | Page 14




SSRMC | Impulse Responses and Variance Decompositions

B Impulse response function
B Consider a univariate series: y, = py.; T

B If the series 1s subject to a shock of size v 1n period 1, the
value of y 1n period 1 and subsequent periods will be:
t=1, y=py,+v,=v
t=2, Y, =Py, =PV
t=3, y,=py, =p(py,) =p’v

the shock is v, pv, p*v , ... ...

B The time-path of y following the shock 1s known as the
impulse response function (IRF)
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SSRMC | Impulse Responses and Variance Decompositions

B Impulse response function: example
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Impulse responses for an AR(1) model y, = 0.9y, , + e, following a unit shock
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SSRMC | Impulse Responses and Variance Decompositions

B Impulse response function
B Consider a bivariate VAR system of stationary variables:

_ y
Y, =0,,+0,,¥,; +0,X,_, +V,

X, =05 +0, Y, 0%, +V,
B when there 1s a one—standard deviation shock (alternatively
called an imnnovation) to y:

Let v =0y,vty =0forz>1, v/ =0 forall #
t=1 y=v/ =0,
x=v;=0
t=2 y,=0,y+0,x, =08,0 +6,0=9,0,
x,=0,y+06,x =0,0 +9,0=90,0,
t=3 y,=9,y,+0,x, = 6”6”0y +6126210y

Xy = 621yz + 622x2 = 6216110)) + 6226210y

impulse response to y ony: ¢ {1, 9, , (6”6” +612621) yeen een }

impulse response to y on x: oy{(), 9, (6216“ +622621) g}
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SSRMC | Impulse Responses and Variance Decompositions

B Impulse response function
B Consider a bivariate VAR system of stationary variables:

_ y
Y, =0,,+0,,¥,; +0,X,_, +V,

X, =05 +0, Y, 0%, +V,
B when there 1s a one—standard deviation shock (alternatively

called an innovation) to x:
Now letvi =0 _, v’ =0 for¢>1, v/’ =0 for all

t=1 y =v=0
X, =V =0_
t=2 Vs =611y1 +612x1 =6110+6120x =6120x

X, = 621y1 + 622xl = 6210 + 6220x = 6220x

impulse response to x ony: 6 {0, 0,,, (611612 +612622) yaee e )

impulse response to x onx: ¢ {1, 9, (621612 +622622) yeeen )
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SSRMC | [mpulse Responses and Variance Decompositions
Response of yto y Response of y to x
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SSRMC | Impulse Responses and Variance Decompositions

* Example: Real personal disposable income (YY)
and real personal consumption expenditure (C)

varbasic, D.c, D.c varbasic, D.c, D.y
1
OM
-.5
varbasic, D.y, D.c varbasic, D.y, D.y
1 -
.54
O_
-.5— T T T T T T T
(0} 2 4 6 8 (0} 2 4 6 8
step
95% CiI impulse-response function (irf)

Graphs by irfname, impulse variable, and response variable
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SSRMC | Impulse Responses and Variance Decompositions

B Variance Decomposition: attributing the source of
the variation in the forecast error

B Consider a univariate series: y, = py,; + v,

B The best one-step-ahead forecast (alternatively the

forecast one period ahead) i1s:
yt = pyt—l + Vt

yth—l :Et[pyt +Vt+1] = pyt
Yin _Et[yt+l] = Vi1 —PY: = Vi
ytlj-z :Et[pyt+1 +Vt+2] :Et[p(pyt +Vt+1)+vt+2] — pzyt

Yis2 _Et[yt+2] = V2 — pzyt =PV + Vi
B The forecast error variance 1s 100% due to its own

shock

| Time Series Analysis | Page 21




SSRMC

Impulse Responses and Variance Decompositions

B Variance Decomposition: attributing the source of the
variation 1n the forecast error

B Consider a bivariate example:

=0,y +0,,Y,_; +0,x,_, +V/

] Ignormg the 1ntercepts (since they are constants), the
one—step ahead forecasts are:

ytlil = Ez[511yz + 812xz + vzy+1] = Sllyt + 812xz

z+1 =E,[0,,y, +0,,x, + v, ]=0,y, +0,,x,
FEy Vi —E [yt+1] t+19 Var(FEly) = Gy

FE'=x_ —E|[x, ]=v,; var(FE')=c"
B The forecast error variance 1s 100% due to i1its own shock
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SSRMC

Impulse Responses and Variance Decompositions

B Variance Decomposition (bivariate case cont’d)
B The two—step ahead forecasts are:

yzliz =E[8,,y,,, +8,%,,, +V,,,]
=E[5, (811J’z +8,X, +Vy ) +6,, (821J’z +8,x, + V. ) +V]
=0, (811J’z +9,,x, ) +3,, (821J’z +8,,x, )

2 2 2 2 2
FEzy = Y2 — Viz2 = 511”1:3;1 + 812V74q + vt?/+2 VaI'(FEzy) = 5110_)1 +512O-x +O-y

F X

X, =E[6,),,, +8,%, +V.,]
X X

=E,[06,,(0,,¥, +0,,x, +V,,1) +8,,(0,,y, +8,,x, + Vv, ) +V,,, ]

=0,,(8,,, +8,,x,) +8,,(8,,y, +6,,x,)

x 2 2, &2 2, 2
FES = Y42 = ¥is2 = 821Vi4q + 822051 + Vs var(FE, ) = 5210—)/ +0y0; +0,
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SSRMC

Impulse Responses and Variance Decompositions

B This decomposition 1s often expressed 1n proportional

terms
) . % explained b % explained b
Variable | Forecasting error P y P y
own shock other shock
0’0’ +o? 5202
Y 51210-)21 +51220-3 +O')2} 2 211 yz 2y 2 52 2 1522 ; 2 2
0,0, + 0,0, +0, 110, +0),0, +0,
0ict+o? b yello 2
2 2 2 2 2 29, X 219,
X orc°+o.0" +0 2 2 2 2 2
217y 22 x x 6,0, +0,0; +0, 52210-5 +0,0.+0.

B Contemporaneous interactions and correlated errors
complicate the 1identification of the nature of shocks and
hence the interpretation of the impulses and decomposition
of the causes of the forecast error variance
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SSRMC | Impulse Responses and Variance Decompositions

B Example: Real personal disposable income (YY)
and real personal consumption expenditure (C)

varbasic, D.c, D.c varbasic, D.c, D.y
1
5
O._

varbasic, D.y, D.c varbasic, D.y, D.y
1
.5
O_

0 2 4 6 8 0 2 4 6 é
step
95% ClI fraction of mse due to impulse

Graphs by irfname, impulse variable, and response variable
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SSRMC Summary

® VEC and VAR Models

® Estimating a Vector Error Correction Model

m Estimating a VAR Model

® Impulse Responses and Variance Decomposition
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