SSRMC		
	Topic One Regression with Time Seri Stationary Variable	es Data:
	Time Series Analysis	Page 1

Outline

- Introduction
- Finite Distributed Lags
- Serial Correlation
- Estimation with Serially Correlated Errors
- Autoregressive Distributed Lag Models
- Forecasting
- Multiplier Analysis

- When modeling relationships between variables, the nature of the data that have been collected has an important bearing on the appropriate choice of an econometric model
 - Two features of time-series data to consider:
 - Time-series observations on a given economic unit, observed over a number of time periods, are likely to be correlated
 - 2. Time-series data have **a natural ordering** according to time

- There is also the possible existence of dynamic relationships between variables
 - A dynamic relationship is one in which the change in a variable now has an impact on that same variable, or other variables, in **one or more future time periods**
 - These effects do not occur instantaneously but are spread, or **distributed**, over future time periods

SSRMC

■ Ways to model the dynamic relationship:

1. Specify that a dependent variable *y* is a function of current and past values of an explanatory variable *x*

 $y_t = f(x_t, x_{t-1}, x_{t-2}, ...)$

• Because of the existence of these lagged effects, this equation is called a **distributed lag (DL) model**

Introduction

■ Ways to model the dynamic relationship (Continued):

2. Capturing the dynamic characteristics of timeseries by specifying a model with a lagged dependent variable as one of the explanatory variables

$$y_t = f(y_{t-1}, x_t)$$

or

$$y_t = f(y_{t-1}, x_t, x_{t-1}, x_{t-2})$$

-Such models are called **autoregressive distributed lag (ARDL)** models, with "autoregressive" meaning a regression of y_t on its own lag or lags

SSRMC

■ Ways to model the dynamic relationship (Continued):

3. Model the continuing impact of change over several periods via the error term

$$y_t = f(x_t) + e_t$$
 $e_t = f(e_{t-1})$

- In this case e_t is correlated with e_{t-1}
- We say the errors are **serially correlated** or **autocorrelated**

SSRMC

The primary assumption in OLS is:

$$\operatorname{cov}(y_i, y_j) = \operatorname{cov}(e_i, e_j) = 0 \text{ for } i \neq j$$

• For time series, this is written as:

$$\operatorname{cov}(y_t, y_s) = \operatorname{cov}(e_t, e_s) = 0 \quad \text{for } t \neq s$$

- The dynamic models mentioned previously imply correlation between y_t and y_{t-1} or e_t and e_{t-1} or both, so they clearly violate this assumption

Finite Distributed Lags

- Consider a linear model in which, after q time periods, changes in x no longer have an impact on $y_{t} = \alpha + \beta_0 x_t + \beta_1 x_{t-1} + \beta_2 x_{t-2} + \dots + \beta_a x_{t-a} + e_t$
- This model has two uses:
 - Forecasting

$$y_{T+1} = \alpha + \beta_0 x_{T+1} + \beta_1 x_T + \beta_2 x_{T-1} + \dots + \beta_q x_{T-q+1} + e_{T+1}$$

Policy analysis

• What is the effect of a change in *x* on *y*?

 $\frac{\partial E(y_t)}{\partial x_{t-s}} = \frac{\partial E(y_{t+s})}{\partial x_t} = \beta_s$

Finite Distributed Lags

$$y_t = \alpha + \beta_0 x_t + \beta_1 x_{t-1} + \beta_2 x_{t-2} + \dots + \beta_q x_{t-q} + e_t$$

The effect of a one-unit change in x_t is **distributed** over the current and next q periods, from which we get the term "distributed lag model"

It is called a finite distributed lag model of order q

- It is assumed that after a finite number of periods q, changes in x no longer have an impact on y
- The coefficient β_s is called a **distributed-lag weight** or an *s*-period delay multiplier
- The coefficient β_0 (s = 0) is called the impact multiplier

Finite Distributed Lags

$$y_t = \alpha + \beta_0 x_t + \beta_1 x_{t-1} + \beta_2 x_{t-2} + \dots + \beta_q x_{t-q} + e_t$$

Assume x_t is increased by one unit and then maintained at its new level in subsequent periods

- The immediate impact will be β_0
- the total effect in period t + 1 will be $\beta_0 + \beta_1$, in period t + 2 it will be $\beta_0 + \beta_1 + \beta_2$, and so on
 - These quantities are called **interim multipliers**
- The total multiplier is the final effect on y of the sustained increase after q or more periods have elapsed

Finite Distributed Lags

Example: Okun's Law

- The change in the unemployment rate depends on the rate of growth of output in the economy:

$$U_t - U_{t-1} = -\gamma \left(G_t - G_N \right)$$

– We can rewrite this as:

 $DU_t = \alpha + \beta_0 G_t + e_t$ where $DU = \Delta U = U_t - U_{t-1}$, $\beta_0 = -\gamma$, $\alpha = \gamma G_{N}$, and

$$G_t = \frac{GDP_t - GDP_{t-1}}{GDP_{t-1}} \times 100$$

- We can expand this to include lags:

$$DU_{t} = \alpha + \beta_{0}G_{t} + \beta_{1}G_{t-1} + \beta_{2}G_{t-2} + \dots + \beta_{q}G_{t-q} + e_{t}$$

Finite Distributed Lags

Finite Distributed Lags

Lag L	ength $q = 3$		
Coefficient	Std. Error	<i>t</i> -value	<i>p</i> -value
0.5810	0.0539	10.781	0.0000
-0.2021	0.0330	6.120	0.0000
-0.1645	0.0358	-4.549	0.0000
-0.0716	0.0353	-2.027	0.0456
0.0033	0.0363	0.091	0.9276
Observations = 95 $R^2 = 0.652$		$\hat{\sigma} = 0$	0.1743
Lag L	ength $q = 2$		
Coefficient	Std. Error	<i>t</i> -value	<i>p</i> -value
0.5836	0.0472	12.360	0.0000
-0.2020	0.0324	-6.238	0.0000
-0.1653	0.0335	-4.930	0.0000
-0.0700	0.0331	-2.115	0.0371
$R^2 =$	0.654	$\hat{\sigma} = 0$.1726
	Coefficient 0.5810 -0.2021 -0.1645 -0.0716 0.0033 $R^2 = 1$ Lag L Coefficient 0.5836 -0.2020 -0.1653 -0.0700	Lag Length $q = 3$ Coefficient Std. Error 0.5810 0.0539 -0.2021 0.0330 -0.1645 0.0358 -0.0716 0.0353 0.0033 0.0363 $R^2 = 0.652$ Lag Length $q = 2$ Coefficient Std. Error 0.5836 0.0472 -0.2020 0.0324 -0.1653 0.0335 -0.0700 0.0331	Lag Length $q = 3$ Coefficient Std. Error t-value 0.5810 0.0539 10.781 -0.2021 0.0330 6.120 -0.1645 0.0358 -4.549 -0.0716 0.0353 -2.027 0.0033 0.0363 0.091 $R^2 = 0.652$ $\hat{\sigma} = 0$ Lag Length $q = 2$ $\hat{\sigma} = 0$ Coefficient Std. Error t-value 0.5836 0.0472 12.360 -0.2020 0.0324 -6.238 -0.1653 0.0335 -4.930 -0.0700 0.0331 -2.115

Serial Correlation

- When a variable exhibits correlation over time,
 we say it is **autocorrelated** or **serially correlated**
- How do we test whether an autocorrelation is significantly different from zero?
 - The *k*-th order sample autocorrelation
 - Correlogram (the sample autocorrelation function)
 - Lagrange Multiplier test
 - Durbin-Watson test (used less frequently today)

Serial Correlation

- The null hypothesis is $H_0: \rho_k = 0$
- The test statistic is:

$$Z = \frac{r_k - 0}{\sqrt{1/T}} = \sqrt{T}r_k \sim N(0, 1)$$

The sample statistic, or the *k*-th order sample autocorrelation for a series *y* that gives the correlation between observations that are *k* periods apart, is:

$$r_{k} = \frac{\sum_{t=k+1}^{T} (y_{t} - \overline{y})(y_{t-k} - \overline{y})}{\sum_{t=1}^{T} (y_{t} - \overline{y})^{2}}$$

Time Series Analysis

- Example: Okun's Rule (Cont'd)
- The first four autocorrelations are:

 $r_1 = 0.494$ $r_2 = 0.411$ $r_3 = 0.154$ $r_4 = 0.200$ The test statistics are:

$$Z_1 = \sqrt{98} \times 0.494 = 4.89, \quad Z_2 = \sqrt{98} \times 0.414 = 4.10$$

 $Z_3 = \sqrt{98} \times 0.154 = 1.52, \quad Z_4 = \sqrt{98} \times 0.200 = 1.98$

Critical value: 1.98

We conclude that G, the quarterly growth rate in U.S. GDP, exhibits significant serial correlation at lags one and two

The correlogram (sample autocorrelation function) is the sequence of autocorrelations r_1 ,

Example: Phillips Curve (Inflation & changes of unemployment rate)

 $INF_t = \beta_1 + \beta_2 DU_t + e_t$

Australian price inflation (left) and quarterly changes of unemployment rate (right)

Time Series Analysis

Serial Correlation

The least squares equation is:

$$INF = 0.7776 - 0.5279DU$$

(se) (0.0658) (0.2294)

The *k*-th order autocorrelation for the residuals can be written as:

$$r_{k} = rac{\sum\limits_{t=k+1}^{T} \hat{e}_{t} \hat{e}_{t-k}}{\sum\limits_{t=1}^{T} \hat{e}_{t}^{2}}$$

The values at the first five lags are:

$$r_1 = 0.549$$
 $r_2 = 0.456$ $r_3 = 0.433$ $r_4 = 0.420$ $r_5 = 0.339$

The significance bounds are $1.96 / \sqrt{90} = 0.21$

- LM Test: a joint test of correlations at more than one lag
- In a simple linear regression model

$$y_t = \beta_1 + \beta_2 x_t + e_t$$

If residuals are correlated, then one way to model the relationship between them is to write:

$$e_{t} = \rho_{1}e_{t-1} + \rho_{2}e_{t-2} + \dots \rho_{p}e_{t-p} + v_{t}$$

Test $H_0: \rho = 0$ by using a linear regression equation

$$y_{t} = \beta_{1} + \beta_{2}x_{t} + \rho_{1}e_{t-1} + \rho_{2}e_{t-2} + \dots\rho_{p}e_{t-p} + v_{t}$$

$$\widehat{e}_{t} = (\beta_{1} - b_{1}) + (\beta_{2} - b_{2})x_{t} + \rho_{1}\widehat{e}_{t-1} + \rho_{2}\widehat{e}_{t-2} + \dots\rho_{p}\widehat{e}_{t-p} + v_{t}$$

$$T \times R^{2} \sim \chi^{2}(p)$$

Serial Correlation

- Example: Philips Curve (Cont'd) $\hat{e}_t = (\beta_1 - b_1) + (\beta_2 - b_2) DU_t + \rho_1 \hat{e}_{t-1} + \rho_2 \hat{e}_{t-2} + ... \rho_p \hat{e}_{t-p} + v_t$ The first *p* initial values of residuals are unknown. Two
- The first p initial values of residuals are unknown. Two ways to handle this are:
 - 1. Delete the first i observation and use a total of *T*-p observations
 - 2. Set these initial values to zero and use all *T* observations

 To test H₀: ρ = 0 at p = 1 (critical value = 3.84) (Method 1) LM = (T − 1)×R² = 89×0.3102 = 27.61 (Method 2) LM = T×R² = 90×0.3066 = 27.59
 Reject the null hypothesis. Errors are serially correlated.

Serial Correlation

Example: Philips Curve (Cont'd) $\widehat{e}_{t} = (\beta_{1} - b_{1}) + (\beta_{2} - b_{2})DU_{t} + \rho_{1}\widehat{e}_{t-1} + \rho_{2}\widehat{e}_{t-2} + ...\rho_{p}\widehat{e}_{t-p} + v_{t}$ To test H₀: $\rho = 0$ at p = 4 (critical value = 9.49) $(Method 1) LM = (T - 4) \times R^{2} = 86 \times 0.3882 = 33.4$ $(Method 2) LM = T \times R^{2} = 90 \times 0.4075 = 36.7$

Reject the null hypothesis. Errors are serially correlated.

Estimation with Serially Correlated Errors

Least squares estimation without recognizing the existence of serially correlated errors

- The least squares estimator is still a linear
 unbiased estimator, but it is no longer best
- The formulas for the standard errors usually computed for the least squares estimator are no longer correct
- Confidence intervals and hypothesis tests
 that use these standard errors may be
 misleading

Estimation with Serially Correlated Errors

Three estimation procedures are considered:

SSRMC

- 1. Least Squares (LS) estimation with Heteroskedasticity and Autocorrelation Consistent (HAC) standard errors
- 2. Nonlinear Least Squares with an AR(1) error specification $e_t = \rho e_{t-1} + v_t$
- 3. Autoregressive Distributed Lag (ARDL) model

Estimation with Serially Correlated Errors

- LS with HAC standard errors:
 - $y_t = \beta_1 + \beta_2 x_t + e_t$, where e_t is serially correlated
- HAC (heteroskedasticity and autocorrelation consistent) standard errors, or Newey-West standard errors

$$\widehat{\operatorname{var}_{HAC}(b_2)} = \widehat{\operatorname{var}_{HC}(b_2)} \times \widehat{g} \qquad \widehat{g} = \left[1 + \frac{\sum_{t \neq s} w_t w_s \operatorname{cov}(e_t, e_s)}{\sum_t w_t^2 \operatorname{var}(e_t)} \right]$$

$$\widehat{\operatorname{var}_{HC}(b_2)} = \sum_t w_t^2 \operatorname{var}(e_t) \qquad w_t = (x_t - \overline{x}) / \sum_t (x_t - \overline{x})^2$$

Estimation with Serially Correlated Errors

- LS with HAC standard errors (Cont'd):
- Example: Philips Curve $\widehat{INF} = 0.7776 - 0.5279DU$ (0.0658) (0.2294) (LS Standard Errors) (0.1030) (0.3127) (HAC Standard Errors)
- The *t* and *p*-values for testing H_0 : $\beta_2 = 0$ are: t = -0.5279/0.2294 = -2.301 p = 0.0238 (from LS standard errors) t = -0.5279/0.3127 = -1.688 p = 0.0950 (from HAC standard errors)

The *LS* standard errors give misleading test results

Estimation with Serially Correlated Errors

Nonlinear Least Squares with an AR(1) error specification:

$$e_t = \rho e_{t-1} + v_t \qquad \left[-1 < \rho < 1\right]$$

- ρ is the **first-order autocorrelation** for *e*. r_1 is an estimate for ρ $r_1 = \frac{\sum e_t e_{t-1}}{\sum e_t^2}$
- ρ_k : represents the correlation between two errors that are k periods apart

$$E(e_{t}) = 0 \quad \operatorname{var}(e_{t}) = \sigma_{e}^{2} = \frac{\sigma_{v}^{2}}{1 - \rho^{2}} \quad \operatorname{cov}(e_{t}, e_{t-k}) = \frac{\rho^{k} \sigma_{v}^{2}}{1 - \rho^{2}}, \quad k > 0$$

$$\rho_{k} = \operatorname{corr}(e_{t}, e_{t-k}) = \frac{\operatorname{cov}(e_{t}, e_{t-k})}{\sqrt{\operatorname{var}(e_{t})\operatorname{var}(e_{t-k})}} = \frac{\rho^{k} \sigma_{v}^{2}/(1 - \rho^{2})}{\sigma_{v}^{2}/(1 - \rho^{2})} = \rho^{k}$$

Estimation with Serially Correlated Errors

Nonlinear Least Squares with an AR(1) error specification: $e_t = \rho e_{t-1} + v_t \quad [-1 < \rho < 1]$

The regression model can be re-arranged into

$$y_{t} = \beta_{1} + \beta_{2}x_{t} + \rho e_{t-1} + v_{t}$$

$$y_{t} = \beta_{1}(1-\rho) + \beta_{2}x_{t} + \rho y_{t-1} - \rho\beta_{2}x_{t-1} + v_{t}$$

- It is not a linear function of the parameters (β_1, β_2, ρ)
- Nonlinear least squares estimation of this equation is equivalent to using an iterative generalized least squares estimator called the Cochrane-Orcutt procedure

Estimation with Serially Correlated Errors

Nonlinear Least Squares with an AR(1) error specification:

$$e_t = \rho e_{t-1} + v_t \qquad \left[-1 < \rho < 1 \right]$$

Example: Philips Curve

$$INF_{t} = \beta_{1}(1-\rho) + \beta_{2}DU_{t} + \rho INF_{t-1} - \rho\beta_{2}DU_{t-1} + v_{t}$$

Nonlinear LS estimates are $\widehat{INF} = 0.7609 - 0.6944DU$ $e_t = 0.557e_{t-1} + v_t$

$$(se)$$
 (0.1245) (0.2479) (0.09)

Compared with the HAC LS estimates (given below), the nonlinear estimates are more accurate

INF = 0.7776 - 0.5279DU

(0.0658) (0.2294) (LS Standard Errors) (0.1030) (0.3127) (HAC Standard Errors)

Time Series Analysis

Estimation with Serially Correlated Errors

- Autoregressive Distributed Lag (ARDL) model:
- The nonlinear LS regression model can be written into an ARDL model as follows:
 - $y_{t} = \beta_{1} (1 \rho) + \beta_{2} x_{t} + \rho y_{t-1} \rho \beta_{2} x_{t-1} + v_{t}$
 - $y_t = \delta + \theta_1 y_{t-1} + \delta_0 x_t + \delta_1 x_{t-1} + v_t$ with the restriction $\delta_1 = -\theta_1 \delta_0$ imposed
- This model can be estimated with a restricted LS method
- It reduces the number of parameters from four to three and makes the two equations equivalent
- As long as the assumption ($\delta_1 = -\theta_1 \delta_0$) holds, LS estimation is valid. This can be checked by a Wald test.

Estimation with Serially Correlated Errors

- Autoregressive Distributed Lag (ARDL) model:
- Example: Philips Curve
- The ARDL estimation is

 $\widehat{INF}_{t} = 0.3336 + 0.5593INF_{t-1} - 0.6882DU_{t} + 0.3200DU_{t-1}$

- (se) (0.0899) (0.0908) (0.2575) (0.2499)
- The Wald test statistic is 0.112, with a p-value of 0.738. Do not reject the null hypothesis $\delta_1 = -\theta_1 \delta_0$. The ARDL estimation is valid.
- Since DU_{t-1} is not significant, this variable is dropped and the re-estimated model is

 $\widehat{INF}_{t} = 0.3548 + 0.5282INF_{t-1} - 0.4909DU_{t}$ (se) (0.0876) (0.0851) (0.1921)

Estimation with Serially Correlated Errors

SSRMC

\mathcal{Y}_{1}	$\mathbf{h}_{\mathrm{t}} = \boldsymbol{\beta}_1 + \boldsymbol{\beta}_2 \mathbf{x}_t + \mathbf{e}_{\mathrm{t}},$	<i>e</i> _t =	$= \rho e_{t-1} + $	v _t
	LS Model with HAC SE	Nonlin LS Mo	ear del	ARDL Model
β ₁	0.7776 (0.1030)	0.760 (0.124	9 5)	0.7570 ()
β_2	-0.5279 (0.3127)	-0.694 (0.247	4 9)	-0.6882 (0.2575)
ρ		0.5570 (0.0900)		0.5593 (0.0908)
AR(1) test	No	Yes		Yes
	Time Series Analysis Page 34			

Autoregressive Distributed Lag Models

An autoregressive distributed lag (ARDL) model is one that contains both lagged x_t's and lagged y_t's y_t = δ + δ₀x_t + δ₁x_{t-1} + ··· + δ_qx_{t-q} + θ₁y_{t-1} + ··· + θ_py_{t-p} + v_t
Two examples: ARDL(1,1): ÎNF_t = 0.3336+0.5593INF_{t-1} - 0.6882DU_t + 0.3200DU_{t-1} ARDL(1,0): ÎNF_t = 0.3548+0.5282INF_{t-1} - 0.4909DU_t
An ARDL (p,q) model can be transformed into one with

only lagged *x*'s which go back into the infinite past:

$$y_{t} = \alpha + \beta_{0} x_{t} + \beta_{1} x_{t-1} + \beta_{2} x_{t-2} + \beta_{3} x_{t-3} + \dots + e_{t} = \alpha + \sum_{s=0}^{\infty} \beta_{s} x_{t-s} + e_{t}$$

This model is called an **infinite distributed lag model**

Autoregressive Distributed Lag Models

SSRMC

Four possible criteria for choosing *p* and *q*:

- 1. Has serial correlation in the errors been eliminated?
- 2. Are the signs and magnitudes of the estimates consistent with our expectations from economic theory?
- 3. Are the estimates significantly different from zero, particularly those at the longest lags?
- 4. What values for *p* and *q* minimize information criteria such as the *AIC* and *SC*?

Autoregressive Distributed Lag Models

Example: Philips CurveARDL(1,0) model:

 $\widehat{INF}_{t} = 0.3548 + 0.5282 INF_{t-1} - 0.4909 DU_{t}, \quad \text{obs} = 90$ (se) (0.0876) (0.0851) (0.1921)

Autoregressive Distributed Lag Models

	Examp	le: Philip	s Curve	: AR	RDL(4,0)) model	•
	$\widehat{INF}_t = 0.1$	001+0.2354 <i>IN</i>	$F_{t-1} + 0.1213I$	NF _{t-2} +	-0.1677 <i>INF</i>	t-3	
	(se) (0.09)	983) (0.1016)	(0.1038)	(0.1050)		
		+0.28191	$NF_{t-4} - 0.7902$	$2DU_t$			
		(0.1014)	(0.1885	5) _	obs = 87		
р	q	AIC	SC	р	q	AIC	SC
1	0	-1.247	-1.160	1	1	-1.242	-1.128
2	0	-1.290	-1.176	2	1	-1.286	-1.142
_3	0	-1.335	-1.192	3	1	-1.323	-1.151
4	0	-1.402	-1.230	4	1	-1.380	-1.178
5	0	-1.396	-1.195	5	1	-1.373	-1.143
6	0	-1.378	-1.148	6	1	-1.354	-1.096

Inflationary expectations are given by: $INF_t^E = 0.1001 + 0.2354INF_{t-1} + 0.1213INF_{t-2} + 0.1677INF_{t-3} + 0.2819INF_{t-4}$

Time Series Analysis

Autoregressive Distributed Lag Models

- Example: Okun's Law
- An ARDL (0,2) Model
 - $DU_t = 0.5836 0.2020G_t 0.1653G_{t-1} 0.0700G_{t-2}$
 - (se) (0.0472) (0.0324) (0.0335) (0.0331)

An ARDL (1,1) Model $\widehat{DU}_{t} = 0.3780 + 0.3501DU_{t-1} - 0.1841G_{t} - 0.0992G_{t-1}$ (se) (0.0578)(0.0846) (0.0307) (0.0368)

(p, q)	AIC	SC	(<i>p</i> , <i>q</i>)	AIC	SC	(<i>p</i> , <i>q</i>)	AIC	SC
(0,1)	-3.436	-3.356	(1,1)	-3.588	-3.480	(2,1)	-3.569	-3.435
(0,2) (0,3)	$-3.463 \\ -3.442$	$-3.356 \\ -3.308$	(1,2) (1,3)	$-3.568 \\ -3.561$	-3.433 -3.400	(2,2) (2,3)	$-3.548 \\ -3.549$	-3.387 -3.361

Time Series Analysis

Autoregressive Distributed Lag Models

- An autoregressive model of order p, denoted AR(p), is given by:
 - $y_t = \beta + \beta_1 y_{t-1} + \beta_2 y_{t-2} + \dots + \beta_p y_{t-p} + v_t$
- Example: Growth in real GDP $\hat{G}_t = 0.4657 + 0.3770G_{t-1} + 0.2462G_{t-2}$ (se)(0.1433)(0.1000)(0.1029) obs = 96

■ When AIC and SC disagree, some prefer SC

Order (p)	1	2	3	4	5
AIC SC	$-1.094 \\ -1.039$	-1.131 - <u>1.049</u>	-1.124 -1.015	-1.133 -0.997	$-1.112 \\ -0.948$

Forecasting

- AR model
- Example: Real GDP growth, an AR(2) model $\hat{G}_t = 0.4657 + 0.3770G_{t-1} + 0.2462G_{t-2}$
- The two most recent observations are

$$G_{2009Q3} = 0.8$$
 and $G_{2009Q2} = -0.2$

■ The forecast for the next three quarters are:

$$\begin{split} \hat{G}_{2009Q4} &= 0.46573 + 0.37700 \times 0.8 + 0.24624 \times \left(-0.2\right) = 0.7181 \\ \hat{G}_{2010Q1} &= 0.4657 + 0.3770 \times 0.7181 + 0.2462 \times 0.8 = 0.9334 \\ \hat{G}_{2010Q2} &= 0.4657 + 0.3770 \times 0.9334 + 0.2462 \times 0.7181 = 0.9945 \end{split}$$

Forecasting

- AR model (Example: Real GDP growth)
 A 95% interval forecast for *j* periods into the future is given by G_{T+j} ±t_(0.975,df) ô_j
- $\hat{\sigma}_{j}$ is the standard deviation of forecasting errors $\sigma_{1}^{2} = \operatorname{var}(u_{1}) = \sigma_{v}^{2}; \quad \sigma_{2}^{2} = \operatorname{var}(u_{2}) = \sigma_{v}^{2}(1 + \theta_{1}^{2})$ $\sigma_{3}^{2} = \operatorname{var}(u_{3}) = \sigma_{v}^{2}((\theta_{1}^{2} + \theta_{2})^{2} + \theta_{1}^{2} + 1)$

Quarter	Forecast \hat{G}_{T+j}	Standard Error of Forecast Error $(\hat{\sigma}_j)$	Forecast Interval $\left(\hat{G}_{T+j} \pm 1.9858 \times \hat{\sigma}_{j}\right)$
2009Q4 $(j = 1)$	0.71808	0.55269	(-0.379, 1.816)
2010Q1 $(j = 2)$	0.93343	0.59066	(-0.239, 2.106)
2010Q2 $(j = 3)$	0.99445	0.62845	(-0.254, 2.242)

Time Series Analysis	Page 42
-----------------------------	---------

Forecasting

- ARDL (p,q) Model
- Example: Okun's Law ARDL(1,1)

 $DU_{T+1} = \delta + \theta_1 DU_T + \delta_0 G_{T+1} + \delta_1 G_T + v_{T+1}$

- The value for G_{T+1} can be obtained from an AR model (see slides 41 & 42)
- The future value of U_t (*level*) can be estimated by $U_{T+1} - U_T = \delta + \theta_1 (U_T - U_{T-1}) + \delta_0 G_{T+1} + \delta_1 G_T + v_{T+1}$

 $U_{T+1} = \delta + (\theta_1 + 1)U_T - \theta_1 U_{T-1} + \delta_0 G_{T+1} + \delta_1 G_T + v_{T+1}$

 $= \delta + \theta_1^* U_T + \theta_2^* U_{T-1} + \delta_0 G_{T+1} + \delta_1 G_T + v_{T+1}$

An ARDL(1,1) model for a change in a variable can be written as an ARDL(2,1) model for the level of the same variable

Forecasting

Exponential Smoothing A general form of moving average $\hat{y}_{T+1} = \frac{y_T + y_{T-1} + y_{T-2}}{3}$ If the weights decline exponentially as the observations get older: $\hat{y}_{T+1} = \alpha y_T + \alpha (1 - \alpha)^1 y_{T-1} + \alpha (1 - \alpha)^2 y_{T-2} + \cdots$ $\blacksquare 0 < \alpha < 1$, and $\sum_{s=0}^{\infty} \alpha (1-\alpha)^s = 1$ For forecasting, recognize that: $\hat{y}_{T+1} = \alpha y_T + (1 - \alpha) \hat{y}_T$

Forecasting

- Exponential Smoothing
- α, the smoothing parameter, reflects the relative weight of current information
- The smaller the α, the smoother the forecasting line
- It is often determined by minimizing the sum of squares of the **one-step forecast errors** $v_t = y_t - \hat{y}_t = y_t - (\alpha y_{t-1} + (1 - \alpha) \hat{y}_{t-1})$

Forecasting formula:

$$\hat{y}_t = \alpha y_{t-1} + (1 - \alpha) \hat{y}_{t-1}$$
 $t = 2, 3, ..., T$

Forecasting SSRMC **Exponential Smoothing** $\alpha = 0.38$ $\alpha = 0.80$ 86 86 88 06 08 10 88 90 92 94 96 98 00 02 04 0206 08 Date Date The forecasts for 2009Q4 are: $\alpha = 0.38$: $\hat{G}_{T+1} = 0.38 \times 0.8 + (1 - 0.38) \times (-0.403921) = 0.0536$ $\alpha = 0.8$: $\hat{G}_{T+1} = 0.8 \times 0.8 + (1 - 0.8) \times (-0.393578) = 0.5613$

Multiplier Analysis

Multiplier Analysis: the effect, and the timing of the effect, of a change in one variable on the outcome of another variable

For an ARDL model of the form:

 $y_t = \delta + \theta_1 y_{t-1} + \dots + \theta_p y_{t-p} + \delta_0 x_t + \delta_1 x_{t-1} + \dots + \delta_q x_{t-q} + v_t$ We can transform this into

$$y_{t} = \alpha + \beta_{0} x_{t} + \beta_{1} x_{t-1} + \beta_{2} x_{t-2} + \beta_{3} x_{t-3} + \dots + e_{t}$$

$$\beta_{s} = \frac{\partial y_{t}}{\partial x_{t-s}} = s \text{ period delay multiplier} \qquad \qquad \beta_{0} = \delta_{0}$$

$$\beta_{1} = \delta_{1} + \beta_{0} \theta_{1}$$

$$\beta_{j} = \beta_{j-1} \theta_{1} \text{ for } j \ge 2$$

$$\sum_{j=0}^{\infty} \beta_{j} = \text{ total multiplier} \qquad \qquad \sum_{j=0}^{\infty} \beta_{j} = \delta_{0} + \frac{\delta_{1} + \delta_{0} \theta_{1}}{1 - \theta_{1}}$$

Time Series Analysis

Multiplier Analysis

- Multiplier Analysis
- Example: Okun's Law, ARDL(1,1)

$$DU_t = \delta + \theta_1 DU_{t-1} + \delta_0 G_t + \delta_1 G_{t-1} + v_t$$

- The estimated model is
 - $\widehat{DU}_{t} = 0.3780 + 0.3501 DU_{t-1} 0.1841 G_{t} 0.0992 G_{t-1}$
- The impact and delay multipliers are $\hat{\beta}_0 = \hat{\delta}_0 = -0.1841$ $\hat{\beta}_1 = \hat{\delta}_1 + \hat{\beta}_0 \hat{\theta}_1 = -0.099155 - 0.184084 \times 0.350116 = -0.1636$ $\hat{\beta}_2 = \hat{\beta}_1 \hat{\theta}_1 = -0.163606 \times 0.350166 = -0.0573$ $\hat{\beta}_3 = \hat{\beta}_2 \hat{\theta}_1 = -0.057281 \times 0.350166 = -0.0201$
 - $\hat{\beta}_4 = \hat{\beta}_3 \hat{\theta}_1 = -0.020055 \times 0.350166 = -0.0070$

Multiplier Analysis

Multiplier Analysis

Example: Okun's Law, ARDL(1,1)

Multiplier Analysis

- Multiplier Analysis
- Example: Okun's Law, ARDL(1,1) $\widehat{DU}_t = 0.3780 + 0.3501DU_{t-1} - 0.1841G_t - 0.0992G_{t-1}$ The total multiplier is

$$\sum_{j=0}^{\infty} \beta_j = \hat{\delta}_0 + \frac{\delta_1 + \delta_0 \theta_1}{1 - \hat{\theta}_1} = -0.184084 + \frac{-0.163606}{1 - 0.350116} = -0.4358$$

The normal growth rate that is needed to

maintain a constant rate of unemployment:

$$G_N = -\alpha / \sum_{j=0}^{\infty} \beta_j \qquad \hat{\alpha} = \frac{\hat{\delta}}{1 - \hat{\theta}_1} = \frac{0.37801}{0.649884} = 0.5817$$

 $\hat{G}_{N} = \frac{0.5817}{0.4358} = 1.3\%$ per quarter

Time Series Analysis