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When modeling relationships between variables, 
the nature of the data that have been collected has 
an important bearing on the appropriate choice of 
an econometric model
– Two features of time-series data to consider:

1. Time-series observations on a given 
economic unit, observed over a number of 
time periods, are likely to be correlated

2. Time-series data have a natural ordering  
according to time

Introduction
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There is also the possible existence of dynamic 
relationships between variables 
– A dynamic relationship is one in which the 

change in a variable now has an impact on that 
same variable, or other variables, in one or 
more future time periods

– These effects do not occur instantaneously but 
are spread, or distributed, over future time 
periods

Introduction
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Ways to model the dynamic relationship:
1. Specify that a dependent variable y is a 

function of current and past values of an 
explanatory variable x

• Because of the existence of these lagged 
effects, this equation is called a distributed 
lag (DL) model

Introduction
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Ways to model the dynamic relationship (Continued):
2. Capturing the dynamic characteristics of time-

series by specifying a model with a lagged 
dependent variable as one of the explanatory 
variables

or

–Such models are called autoregressive 
distributed lag (ARDL) models, with 
‘‘autoregressive’’ meaning a regression of yt
on its own lag or lags

Introduction
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Ways to model the dynamic relationship (Continued):
3. Model the continuing impact of change over 

several periods via the error term

• In this case et is correlated with et - 1

• We say the errors are serially correlated or 
autocorrelated

Introduction
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The primary assumption in OLS is:

• For time series, this is written as:

– The dynamic models mentioned previously 
imply correlation between yt and yt - 1 or et and 
et - 1 or both, so they clearly violate this 
assumption

Introduction
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Consider a linear model in which, after q time 
periods, changes in x no longer have an impact on 
y

This model has two uses:
– Forecasting

– Policy analysis
• What is the effect of a change in x on y?

Finite	Distributed	Lags
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The effect of a one-unit change in xt is distributed over 
the current and next q periods, from which we get the term 
‘‘distributed lag model’’
– It is called a finite distributed lag model of order q

• It is assumed that after a finite number of periods q, 
changes in x no longer have an impact on y

– The coefficient βs is called a distributed-lag weight or 
an s-period delay multiplier

– The coefficient β0 (s = 0) is called the impact 
multiplier

Finite	Distributed	Lags
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Assume xt is increased by one unit and then maintained at 
its new level in subsequent periods 
– The immediate impact will be β0
– the total effect in period t + 1 will be β0 + β1,  in period 

t + 2 it will be β0 + β1 + β2, and so on 
• These quantities are called interim multipliers

– The total multiplier is the final effect on y of the 
sustained increase after q or more periods have elapsed

Finite	Distributed	Lags
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Example: Okun’s Law
– The change in the unemployment rate depends on the rate of 

growth of output in the economy:

– We can rewrite this as:

where DU = ΔU = Ut - Ut-1, β0 = -γ, α = γGN, and 

– We can expand this to include lags:

Finite	Distributed	Lags
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– When a variable exhibits correlation over time, 
we say it is autocorrelated or serially correlated

– How do we test whether an autocorrelation is 
significantly different from zero?
• The k-th order sample autocorrelation
• Correlogram (the sample autocorrelation 

function)
• Lagrange Multiplier test
• Durbin-Watson test (used less frequently 

today)

Serial	Correlation
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The null hypothesis is H0: ρk = 0
The test statistic is:

The sample statistic, or the k-th order sample 
autocorrelation for a series y that gives the correlation 
between observations that are k periods apart, is:

Serial	Correlation
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Example: Okun’s Rule (Cont’d)
The first four autocorrelations are:

The test statistics are:

Critical value: 1.98
We conclude that G, the quarterly growth rate in 
U.S. GDP, exhibits significant serial correlation at 
lags one and two

Serial	Correlation
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The correlogram (sample autocorrelation 
function) is the sequence of autocorrelations r1, 
r2, r3, …

Serial	Correlation
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Example: Phillips Curve (Inflation & changes of 
unemployment rate)

Serial	Correlation

Australian price inflation (left) and quarterly changes of unemployment rate (right)
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The least squares equation is:

The k-th order autocorrelation for the residuals can be 
written as:

The values at the first five lags are:

The significance bounds are 

Serial	Correlation
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Correlogram for residuals from least-squares estimated Phillips curve

Serial	Correlation
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LM Test: a joint test of correlations at more than one lag
In a simple linear regression model

If residuals are correlated, then one way to model the 
relationship between them is to write:

Test H0: ρ = 0 by using a linear regression equation

Serial	Correlation
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Example: Philips Curve (Cont’d)

The first p initial values of residuals are unknown. Two 
ways to handle this are:

1. Delete the first i observation and use a total of T-p 
observations 

2. Set these initial values to zero and use all T
observations

To test H0: ρ = 0 at p = 1 (critical value = 3.84)

Reject the null hypothesis. Errors are serially correlated.

Serial	Correlation
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Example: Philips Curve (Cont’d)

To test H0: ρ = 0 at p = 4 (critical value = 9.49)

Reject the null hypothesis. Errors are serially correlated.

Serial	Correlation
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Least squares estimation without recognizing the 
existence of serially correlated errors
– The least squares estimator is still a linear 

unbiased estimator, but it is no longer best
– The formulas for the standard errors usually 

computed for the least squares estimator are no 
longer correct

– Confidence intervals and hypothesis tests 
that use these standard errors may be 
misleading

Estimation	with	Serially	Correlated	Errors
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Three estimation procedures are considered:
1. Least Squares (LS) estimation with 

Heteroskedasticity and Autocorrelation 
Consistent (HAC) standard errors

2. Nonlinear Least Squares with an AR(1) error 
specification 

3. Autoregressive Distributed Lag (ARDL) 
model

Estimation	with	Serially	Correlated	Errors
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LS with HAC standard errors:
yt = β1 + β2xt + et, where et is serially correlated 
HAC (heteroskedasticity and autocorrelation 
consistent) standard errors, or Newey-West 
standard errors
Analogous to the Heteroskedasticity Consistent 
(HC) Standard Errors 

Estimation	with	Serially	Correlated	Errors
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LS with HAC standard errors (Cont’d):
Example: Philips Curve

The t and p-values for testing H0: β2 = 0 are:

The LS standard errors give misleading test results

Estimation	with	Serially	Correlated	Errors
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Nonlinear Least Squares with an AR(1) error specification:

ρ is the first-order autocorrelation for e. r1 is an estimate 
for ρ

ρk: represents the correlation between two errors that are k
periods apart

Estimation	with	Serially	Correlated	Errors
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Nonlinear Least Squares with an AR(1) error specification:

The regression model can be re-arranged into

It is not a linear function of the parameters (β1, β2, ρ) 
Nonlinear least squares estimation of this equation is 
equivalent to using an iterative generalized least squares 
estimator called the Cochrane-Orcutt procedure

Estimation	with	Serially	Correlated	Errors
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Nonlinear Least Squares with an AR(1) error specification:

Example: Philips Curve

Nonlinear LS estimates are

Compared with the HAC LS estimates (given below), the 
nonlinear estimates are more accurate

Estimation	with	Serially	Correlated	Errors
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Autoregressive Distributed Lag (ARDL) model:
The nonlinear LS regression model can be written into an 
ARDL model as follows:

with the restriction δ1 = -θ1δ0 imposed
This model can be estimated with a restricted LS method
It reduces the number of parameters from four to three and 
makes the two equations equivalent
As long as the assumption (δ1 = -θ1δ0 ) holds, LS 
estimation is valid. This can be checked by a Wald test.

Estimation	with	Serially	Correlated	Errors
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Autoregressive Distributed Lag (ARDL) model:
Example: Philips Curve
The ARDL estimation is

The Wald test statistic is 0.112, with a p-value of 0.738. Do 
not reject the null hypothesis δ1 = -θ1δ0. The ARDL 
estimation is valid. 
Since DUt-1 is not significant, this variable is dropped and 
the re-estimated model is

Estimation	with	Serially	Correlated	Errors
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yt = β1 + β2xt + et,                      et = ρet-1 + vt

LS Model with 
HAC SE

Nonlinear 
LS Model

ARDL
Model

β1 0.7776
(0.1030)

0.7609
(0.1245)

0.7570
(--)

β2 -0.5279
(0.3127)

-0.6944
(0.2479)

-0.6882
(0.2575)

ρ
-- 0.5570

(0.0900)
0.5593

(0.0908)
AR(1) test

No Yes Yes

Estimation	with	Serially	Correlated	Errors
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An autoregressive distributed lag (ARDL) model is one 
that contains both lagged xt’s and lagged yt’s

Two examples:

An ARDL (p,q) model can be transformed into one with 
only lagged x’s which go back into the infinite past:

This  model is called an infinite distributed lag model

Autoregressive	Distributed	Lag	Models
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Four possible criteria for choosing p and q:
1. Has serial correlation in the errors been 

eliminated?
2. Are the signs and magnitudes of the estimates 

consistent with our expectations from 
economic theory? 

3. Are the estimates significantly different from 
zero, particularly those at the longest lags? 

4. What values for p and q minimize information 
criteria such as the AIC and SC?

Autoregressive	Distributed	Lag	Models
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Example: Philips Curve
ARDL(1,0) model:

Autoregressive	Distributed	Lag	Models

Correlogram for residuals
p-values for LM Test for 

Autocorrelation
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Example: Philips Curve : ARDL(4,0) model:

Inflationary expectations are given by:

Autoregressive	Distributed	Lag	Models
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Example: Okun’s Law 
An ARDL (0,2) Model

An ARDL (1,1) Model

Autoregressive	Distributed	Lag	Models
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An autoregressive model of order p, denoted 
AR(p), is given by:

Example: Growth in real GDP

When AIC and SC disagree, some prefer SC

Autoregressive	Distributed	Lag	Models
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AR model
Example: Real GDP growth, an AR(2) model

The two most recent observations are 
G2009Q3 = 0.8 and G2009Q2 = -0.2
The forecast for the next three quarters are:

Forecasting
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AR model (Example: Real GDP growth)
A 95% interval forecast for j periods into the 
future is given by

is the standard deviation of forecasting errors

Forecasting
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ARDL (p,q) Model
Example: Okun’s Law ARDL(1,1)

The value for GT+1 can be obtained from an AR 
model (see slides 41 & 42)
The future value of Ut (level) can be estimated by

An ARDL(1,1) model for a change in a variable 
can be written as an ARDL(2,1) model for the 
level of the same variable

Forecasting
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Exponential Smoothing
A general form of moving average

If the weights decline exponentially as the 
observations get older:

0 < α < 1, and 
For forecasting, recognize that:

Forecasting
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Exponential Smoothing
α, the smoothing parameter, reflects the relative 
weight of current information
The smaller the α, the smoother the forecasting 
line
It is often determined by minimizing the sum of 
squares of the one-step forecast errors

Forecasting formula:

Forecasting
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α = 0.38 α = 0.80

Forecasting
Exponential Smoothing

• The forecasts for 2009Q4 are:
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Multiplier Analysis: the effect, and the timing of 
the effect, of a change in one variable on the 
outcome of another variable
For an ARDL model of the form:

We can transform this into

Multiplier	Analysis
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Multiplier Analysis
Example: Okun’s Law, ARDL(1,1)

The estimated model is

The impact and delay multipliers are

Multiplier	Analysis
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Multiplier Analysis
Example: Okun’s Law, ARDL(1,1)

Delay multipliers from Okun’s law ARDL(1,1) model

Multiplier	Analysis
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Multiplier Analysis
Example: Okun’s Law, ARDL(1,1)

The total multiplier is

The normal growth rate that is needed to 
maintain a constant rate of unemployment:

Multiplier	Analysis


